[1]徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473-475.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
 XU Jin-ping,SHAN Shuang-rong.An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(4):473-475.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
点击复制

解抛物型方程的一个高精度显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第4期
页码:
473-475
栏目:
出版日期:
2009-07-20

文章信息/Info

Title:
An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation
文章编号:
1000-5013(2009)04-0473-03
作者:
徐金平单双荣
华侨大学数学科学学院
Author(s):
XU Jin-ping SHAN Shuang-rong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
二阶抛物型方程 高精度 差分格式 耗散项
Keywords:
second-order parabolic equation high accuracy difference scheme dissipative term
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2009.04.0473
文献标志码:
A
摘要:
引入耗散项的方法,构造一个条件稳定的显格式,其稳定性条件为r≤1/2,截断误差可达到O(τ2+h4+hτ22).当τ=O(h)时,此格式可逼近精度,特别当τ=O(h2)时,格式达到二阶精度.数值例子表明,所建立的差分格式是有效的.
Abstract:
This paper gives a three-layer explicit difference scheme with the dissipative term.Its local truncation error is in the order of O(τ2+h4+τ2h2).Numerical examples shown that it is effective and practice consistent with theoretical analysis.

参考文献/References:

[1] 苏煜城, 吴启光. 偏微分方程数值解法 [M]. 北京:气象出版社, 1989.4-7, 58-60.
[2] 余德浩, 汤华中. 偏微分方程数值解法 [M]. 北京:科学出版社, 2004.106-109.
[3] 杨情民. 解抛物型方程的一族显格式 [J]. 高等学校计算数学学报, 1981(4):306-317.
[4] 曾文平. 抛物型方程的一族双参数高精度恒稳差分格式 [J]. 华侨大学学报(自然科学版), 2002(4):327-331.doi:10.3969/j.issn.1000-5013.2002.04.001.
[5] MILLER J J H. On the location of zeros of certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(3):394-406.
[6] RICHTMYER R D, MORTON K W. Difference method for initial-value problems [M]. New York:wiley, 1967.

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(4):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(4):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(4):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[7]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(4):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[8]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[9]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(4):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[10]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(4):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[11]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(4):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(04QZR09)
更新日期/Last Update: 2014-03-23