[1]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618-621.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(4):618-621.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
点击复制

两类单叶调和函数的偏差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第4期
页码:
618-621
栏目:
出版日期:
2008-10-20

文章信息/Info

Title:
Estimate on the Distortion for Two Classes of Harmonic Univalent Functions
文章编号:
1000-5013(2008)04-0618-04
作者:
韩雪黄心中
华侨大学数学科学学院
Author(s):
HAN Xue HUANG Xin-zhong
School of Mathematics Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 偏差 极值函数 δ-邻域
Keywords:
univalent harmonic function distortion extremal function δ-neighborhood
分类号:
O174.51
DOI:
10.11830/ISSN.1000-5013.2008.04.0618
文献标志码:
A
摘要:
在ztrk和Yalin研究单位圆U={z||z|<1}上保向单叶调和函数类HS(α)和HC(α)的某些偏差估计的基础上,进一步研究HS(α)和HC(α)类的函数特征,得到精确的模偏差估计.对于HC(β)类,β≤α,推广调和函数δ-邻域的相关结果,特别当β=α时,得到相应的结论.
Abstract:
ztürk and Yalin gave some distortion estimates for two classes HS(α) and HC(α),both are subclasses of univalent harmonic mappings on the unit disk.In this paper,we will improve their results,obtain some sharp estimates.In addition,to the class HC(β),β≤α,its δ-neighborhood is considered.Some relative results are extended.

参考文献/References:

[1] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 1984.3-25.
[2] SILVERMAN H. Harmonic univalent functions with negative coeffcients [J]. Journal of Mathematical Analysis and Applications, 1998(1):283-289.doi:10.1006/jmaa.1997.5882.
[3] YALCIN S. A new class of Salagean-type harmonic univalent functions [J]. Applied Mathematics Letters, 2005, (2):191-198.doi:10.1016/j.aml.2004.05.003.
[4] AHUJA O P, JAHANGIRI J M. Certain multipliers of univalent harmonic functions [J]. Applied Mathematics Letters, 2005, (12):1319-1324.doi:10.1016/j.aml.2005.02.003.
[5] OZTURK M, YAL IN S. On univalent harmonic functions [J]. Indian Journal of Pure and Applied Mathamatics, 2002(4):1-8.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(4):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]陈少克,温东方.尺寸公差标注的计算机辅助设计[J].华侨大学学报(自然科学版),1992,13(4):526.[doi:10.11830/ISSN.1000-5013.1992.04.0526]
 Chen Shaoke,Wen Dongfan.Computer Aided Design of the Marking of Dimensional Tolerance[J].Journal of Huaqiao University(Natural Science),1992,13(4):526.[doi:10.11830/ISSN.1000-5013.1992.04.0526]
[3]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[4]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(4):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(4):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[7]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[8]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(4):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[9]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]
 FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(4):812.[doi:10.11830/ISSN.1000-5013.201903003]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511025); 华侨大学科研基金资助项目(07HZR03)
更新日期/Last Update: 2014-03-23