参考文献/References:
[1] BRIDGES T J, REICH S. Multi-symplectic integrators:Numerical schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A, 2001, (4-5):184-193.
[2] BRIDGES T J. Multi-symplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[3] REICH S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations [J]. Journal of Computational Physics, 2000(5):473-499.
[4] BRIDGES T J, REICH S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations [J]. Physical Review D, 2001():491-504.doi:10.1016/S0167-2789(01)00188-9.
[5] CHEN Jing-bo, QIN Meng-zhao. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrdinger equation [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2001.193-204.
[6] BOGOLUBSKY L L. Some examples of inelastic solution interaction [J]. Computer Physics Communications, 1977(2):149-155.
相似文献/References:
[1]黄浪扬.非线性“Good”Boussinesq方程的显式多辛格式[J].华侨大学学报(自然科学版),2011,32(1):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]
HUANG Lang-yang.Explicit Multi-Symplectic Scheme for Nonlinear "Good" Boussinesq Equation[J].Journal of Huaqiao University(Natural Science),2011,32(3):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]
[2]王志焕,黄浪扬.组合KdV-mKdV方程的多辛Fourier拟谱格式[J].华侨大学学报(自然科学版),2011,32(4):471.[doi:10.11830/ISSN.1000-5013.2011.04.0471]
WANG Zhi-huan,HUANG Lang-yang.Multi-Symplectic Fourier Pseudo-Spectral Scheme for the Combined KdV-mKdV Equation[J].Journal of Huaqiao University(Natural Science),2011,32(3):471.[doi:10.11830/ISSN.1000-5013.2011.04.0471]