[1]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437-440.[doi:10.3969/j.issn.1000-5013.2007.04.027]
 ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(4):437-440.[doi:10.3969/j.issn.1000-5013.2007.04.027]
点击复制

具有偏差变元的二阶中立型泛函微分方程周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第4期
页码:
437-440
栏目:
出版日期:
2007-10-20

文章信息/Info

Title:
Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments
文章编号:
1000-5013(2007)04-0437-04
作者:
张莉王全义
华侨大学数学科学学院; 华侨大学数学科学学院 福建泉州362021; 福建泉州362021
Author(s):
ZHANG Li WANG Quan-yi
School of Mathematics Science, Huaqiao University, Quanzhou 362021, China
关键词:
中立型泛函微分方程 周期解 k-集压缩算子 偏差变元
Keywords:
neutral functional differential equation periodic solution k-set contraction operator deviating argument
分类号:
O175
DOI:
10.3969/j.issn.1000-5013.2007.04.027
文献标志码:
A
摘要:
利用一些分析技巧及抽象连续性原理,研究一类二阶中立型泛函微分方程周期解的存在性,得到一个保证该类方程周期解存在的充分条件.
Abstract:
In this paper,the existence of periodic solutions for a class of second order functional differential equations with deviating arguments is investigated by using some analytical techniques and the method of the abstract continuation theory.One sufficient condition for the existence of periodic solutions to the considered equations is obtained.

参考文献/References:

[1] 王根强, 燕居让. 二阶非线性中立型泛函微分方程周期解的存在性 [J]. 数学学报, 2004(3):379-384.doi:10.3321/j.issn:0583-1431.2004.02.021.
[2] 张莉, 王全义. 一类二阶中立型泛函微分方程周期解的存在性 [J]. 华侨大学学报(自然科学版), 2006(2):126-129.doi:10.3969/j.issn.1000-5013.2006.02.004.
[3] GAINS R E, MAWHIN J L. Coincidence degree and nonlinear differential equation [M]. Beilin:Springer-Verlag, 1977.1-100.
[4] 郭大钧. 非线性泛函分析 [M]. 济南:山东科学技术出版社, 2002.193-194.
[5] PETRYSHYN W V, YU Z S. Existence theorems for higher order nonlinear periodic boundary value problems [J]. Nonlinear Analysis, 1982(9):943-969.
[6] LIU Zhong-dong, MAO Yi-ping. Existence theorem for periodic solutions of higher order nonlinear differential equations [J]. Journal of Mathematical Analysis and Applications, 1997.481-490.

相似文献/References:

[1]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(4):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[2]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(4):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[3]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[4]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(4):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[5]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[6]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[7]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(4):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[8]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(4):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[9]王全义.线性微分积分方程的周期解[J].华侨大学学报(自然科学版),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
 Wang Quanyi.Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(4):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
[10]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
 Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(4):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
[11]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(4):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23