[1]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433-436.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(4):433-436.[doi:10.3969/j.issn.1000-5013.2007.04.026]
点击复制

拟共形映照的双曲面积偏差()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第4期
页码:
433-436
栏目:
出版日期:
2007-10-20

文章信息/Info

Title:
Hyperbolic Area Distortion under Quasiconformal Mappings
文章编号:
1000-5013(2007)04-0433-04
作者:
韩雪黄心中
华侨大学数学科学学院; 华侨大学数学科学学院 福建泉州362021; 福建泉州362021
Author(s):
HAN Xue HUANG Xin-zhong
School of Mathematics Science, Huaqiao University, Quanzhou 362021, China
关键词:
拟共形映照 调和拟共形映照 双曲面积 爆破集
Keywords:
quasiconformal mapping harmonic quasiconformal mapping hyperbolic area explodable set
分类号:
O174.55
DOI:
10.3969/j.issn.1000-5013.2007.04.026
文献标志码:
A
摘要:
进一步研究拟共形映照f(z)=ρ(r,θ)eiφ(θ),z=reiθ,0
Abstract:
Two-dimensional hyperbolic area distortion under a class of quasiconformal mappings in the unit disk is estimated.As application,the fact that any bounded hyperbolic area set under these mappings can′t be exploded has been proved.Our results extend some previous results of CHEN Xing-di.At last a sort of non-explodable harmonic quasiconformal mappings is obtained.

参考文献/References:

[1] ASTALA K. Area distortion of qusaiconformal mappings [J]. Acta Mathematica, 1994.37-60.
[2] EREMENKO A, HAMILTON D H. On the area distortion by quasiconformalmappings [J]. Proceedings of the American Mathematical Society, 1995.2793-2797.
[3] PORTER R M, RéSNDIS L F. Quasiconformally explodable sets [J]. Complex Variables, 1998.379-392.
[4] 陈行堤. 拟共形映照的爆破集问题 [J]. 华侨大学学报(自然科学版), 2001(2):111-116.doi:10.3969/j.issn.1000-5013.2001.02.001.
[5] PAVLOVIC M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Ann Acad Sci Math, 2002.365-372.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(4):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(4):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[4]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(4):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[5]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(4):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[6]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[7]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(4):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[8]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(4):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[9]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[10]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(4):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[11]吴瑞溢,黄心中.Salagean类单叶调和函数的特征[J].华侨大学学报(自然科学版),2008,29(2):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]
 WU Rui-yi,HUANG Xin-zhong.The Characteristic of Salagean-Type Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2008,29(4):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511025)
更新日期/Last Update: 2014-03-23