[1]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335-336.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(3):335-336.[doi:10.3969/j.issn.1000-5013.2007.03.029]
点击复制

关于“Beurling-Ahlfors扩张的推广”一文的一点注()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第3期
页码:
335-336
栏目:
出版日期:
2007-07-20

文章信息/Info

Title:
A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension
文章编号:
1000-5013(2007)03-0335-02
作者:
林珍连
华侨大学数学科学学院 福建泉州362021
Author(s):
LIN Zhen-lian
School of Mathematics Science, Huaqiao University, Quanzhou 362021, China
关键词:
M-条件 拟共形映照 Beurling-Ahlfors扩张 复特征 局部伸缩商
Keywords:
M-condition quasiconformal mapping Beurling-Ahlfors′ extension complex dilatation local dilatation quotient
分类号:
O174.55
DOI:
10.3969/j.issn.1000-5013.2007.03.029
文献标志码:
A
摘要:
郑学良在"Beurling-Ahlfors扩张的推广"一文中指出,实轴R上保持∞点不动的严格单调增加连续,也就是放弃M-条件,其Beurling-Ahlfors扩张仍然具有局部拟共形性.文中以反例指出,这个论断是错误的.
Abstract:
ZHENG Xue-liang′s paper "The Generlization of Beurling-Ahlfors′ Extension" says that the Beurling-Ahlfors′ extension still possesses local quasiconformality without M-condition.In this paper we shall give a counter example to illustrate the result is not true.

参考文献/References:

[1] Beurling A, Ahlfors L. The boundary corrending under quasiconformal mappings [J]. Acta Mathematica, 1956.125-142.
[2] 郑学良. Beurling-Ahlfors 扩张的推广 [J]. 浙江师范大学学报(自然科学版), 1995(3):16-17.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(3):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(3):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(3):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(3):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[5]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[6]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(3):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[7]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[8]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(3):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[9]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(3):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[10]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
 PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(3):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(S0650019)
更新日期/Last Update: 2014-03-23