参考文献/References:
[1] 鲁世平, 葛谓高. 具有偏差变元的二阶微分方程的周期解 [J]. 数学学报, 2002(4):811-818.doi:10.3321/j.issn:0583-1431.2002.04.025.
[2] LI Yong-kun, KUANG Y. Periodic solutions for a state-dependent delay equations and population models [J]. Proceedings of the American Mathematical Society, 2001(5):1345-1353.doi:10.1090/S0002-9939-01-06444-9.
[3] 韩飞, 王全义. 具状态依赖时滞微分方程的周期正解 [J]. 华侨大学学报(自然科学版), 2005(4):357-360.
[4] 房辉. 高阶非线性中立型微分方程的周期解 [J]. 纯粹数学与应用数学, 2000(2):14-25.doi:10.3969/j.issn.1008-5513.2000.02.003.
[5] GAINS R E, MAWHIN J L. Coincidence degree and nonlinear differential equation [A]. Berlin:Springer-Verlag, 1977.1-100.
[6] 郭大钧. 非线性泛函分析 [M]. 济南:山东科学技术出版社, 2002.193-194.
[7] PETRYSHYN W V, YU Z S. Existence theorems for higher order nonlinear periodic boundary value problems [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982(9):943-969.
[8] LIU Zhong-dong, MAO Yi-ping. Existence theorem for periodic solutions of higher order nonlinear differential equations [J]. Journal of Mathematical Analysis and Applications, 1997.481-490.
相似文献/References:
[1]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[2]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[3]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[4]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[5]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[6]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(2):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[7]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[8]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[9]王全义.线性微分积分方程的周期解[J].华侨大学学报(自然科学版),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
Wang Quanyi.Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
[10]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
[11]佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报(自然科学版),2009,30(6):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
SHE Zhi-wei,WANG Quan-yi.Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument[J].Journal of Huaqiao University(Natural Science),2009,30(2):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
[12]曹君艳,王全义.一类具多时滞二阶非线性微分方程的周期解[J].华侨大学学报(自然科学版),2012,33(3):348.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
CAO Jun-yan,WANG Quan-yi.Periodic Solutions for Second-Order Differential Equations with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(2):348.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
[13]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(2):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]