参考文献/References:
[1] 董士杰, 葛渭高. 一类滞后型非自治的捕食者-食饵系统的周期解 [J]. 系统科学与数学, 2003(4):461-464.doi:10.3969/j.issn.1000-0577.2003.04.004.
[2] 范猛, 王克. 一类具有 Holling Ⅱ型功能性反应的捕食者-食饵系统全局周期解的存在性 [J]. 数学物理学报, 2001(4):492-497.doi:10.3321/j.issn:1003-3998.2001.04.010.
[3] XU Rui, CHEN Lan-sun. Persistence and stability of two-species ratio-dependent predator-prey system with delay in a two-patch environment [J]. Computers and Mathematics with Applications, 2000, (4/5):577-588.doi:10.1016/S0898-1221(00)00181-4.
[4] 张正球, 王志成. 基于比率的三种群捕食者-食饵扩散系统的周期解 [J]. 数学学报, 2004(3):531-540.doi:10.3321/j.issn:0583-1431.2004.03.016.
[5] Li Bi-wen. Positive periodic solution for two-species predator-prey diffusion-delay models with functional response [J]. Annals of Differential Equations, 2003(2):146-153.
相似文献/References:
[1]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(1):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[2]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(1):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[3]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(1):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[4]徐昌进,姚凌云.具有时滞的神经网络模型的分支分析[J].华侨大学学报(自然科学版),2012,33(6):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
XU Chang-jin,YAO Ling-yun.Bifurcation Analysis of a Delayed Neural Networks[J].Journal of Huaqiao University(Natural Science),2012,33(1):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
[5]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(1):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
[6]章培军,王震,杨颖惠.具有收获和Beddington-DeAngelis功能反应的捕食-食饵模型[J].华侨大学学报(自然科学版),2017,38(4):579.[doi:10.11830/ISSN.1000-5013.201704025]
ZHANG Peijun,WANG Zhen,YANG Yinghui.Predator-Prey Model With Beddington-DeAngelis Functional Response and Harvesting[J].Journal of Huaqiao University(Natural Science),2017,38(1):579.[doi:10.11830/ISSN.1000-5013.201704025]
[7]李艳艳,李钟慎.二阶时滞多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2021,42(1):9.[doi:10.11830/ISSN.1000-5013.202006004]
LI Yanyan,LI Zhongshen.Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay[J].Journal of Huaqiao University(Natural Science),2021,42(1):9.[doi:10.11830/ISSN.1000-5013.202006004]