[1]汪岚,金福江.Fabonacci法应用于曲线拟合优化新算法[J].华侨大学学报(自然科学版),2006,27(3):313-316.[doi:10.3969/j.issn.1000-5013.2006.03.025]
 Wang Lan,Jin Fujiang.Research and Application of Optimum Curve-Fitting Method Based on Fabonacci Algorithm[J].Journal of Huaqiao University(Natural Science),2006,27(3):313-316.[doi:10.3969/j.issn.1000-5013.2006.03.025]
点击复制

Fabonacci法应用于曲线拟合优化新算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第3期
页码:
313-316
栏目:
出版日期:
2006-07-20

文章信息/Info

Title:
Research and Application of Optimum Curve-Fitting Method Based on Fabonacci Algorithm
文章编号:
1000-5013(2006)03-0313-04
作者:
汪岚金福江
华侨大学信息科学与工程学院; 华侨大学信息科学与工程学院 福建泉州362021; 福建泉州362021
Author(s):
Wang Lan Jin Fujiang
College of Information Science and Engineering, Huaqiao University, 362021, Quanzhou, China
关键词:
曲线拟合 最小二乘法 Fabonacci优化法 Matlab
Keywords:
curve-fitting least-square law Fabonacci algorithm matlab
分类号:
O241.5
DOI:
10.3969/j.issn.1000-5013.2006.03.025
文献标志码:
A
摘要:
由最小二乘法得到的曲线拟合的效果是较好的,但却不一定是最优的.文中提出将最小二乘法与Fa-bonacci法结合,得到一种曲线拟合的新优化算法.该算法的思路是在最小二乘法的基础之上,结合Fabonacci法优化已得到的拟合曲线的方程系数,使其更加合理化,从而获得最佳拟合曲线.该方法适用优化区间为单峰函数的任何数据,实例表明方法是切实可行的.
Abstract:
According to classic experiment,using the least-square,law,better fitting-curve can be obtained,but it isn’t optimum.A new algorithm based on least-square law combined with Fabonacci optimum was proposed.To optimize the constant of imitative equation,it shows that this algorithm becomes more reasonable.Using this new algorithm,optimum fitting-curve can be obtained.This algorithm can be applied to all data of single-peak function and its applications are introduced.The feasibility and validity of this new algorithm have been verified by real examples.

参考文献/References:

[1] 薛亚琴. 电涡流传感器特性曲线拟合的新方法 [J]. 传感器技术, 2003(7):42-44.doi:10.3969/j.issn.1000-9787.2003.07.015.
[2] 陈宝林. 最优化理论与算法 [M]. 北京:清华大学出版社, 2003.307-311.
[3] Mathews J H, Kurtis D F, 周璐. 数值分析 [M]. 北京:电子工业出版社, 2004.254-259.
[4] 袁亚湘, 孙文瑜. 最优化理论和方法 [M]. 北京:科学出版社, 1999.73-75.
[5] 金福江. 制浆生产蒸煮过程多目标优化控制 [J]. 华侨大学学报(自然科学版), 2004(4):422-427.doi:10.3969/j.issn.1000-5013.2001.04.020.

相似文献/References:

[1]方柏山.由连续培养数据估算微生物生长动力学和能学参数的研究[J].华侨大学学报(自然科学版),1987,8(4):458.[doi:10.11830/ISSN.1000-5013.1987.04.0458]
 Fang Baishan.Using Continuous Culture Data to Estimate Kinetics and Energetics Parameters of Microbial Growth[J].Journal of Huaqiao University(Natural Science),1987,8(3):458.[doi:10.11830/ISSN.1000-5013.1987.04.0458]
[2]王仁谦.一种多个粗差的定位与估值的方法[J].华侨大学学报(自然科学版),2004,25(2):153.[doi:10.3969/j.issn.1000-5013.2004.02.011]
 Wang Renqian.A Method for Locating and Estimating Maltidimensional Gross Errors[J].Journal of Huaqiao University(Natural Science),2004,25(3):153.[doi:10.3969/j.issn.1000-5013.2004.02.011]
[3]占济舟,吕跃进.区间数判断矩阵的最小二乘排序法[J].华侨大学学报(自然科学版),2005,26(1):31.[doi:10.3969/j.issn.1000-5013.2005.01.008]
 Zhan Jizhou,Lu Yuejin.Least Square Method for Sequencing Judgement Matrix of Interval Numbers[J].Journal of Huaqiao University(Natural Science),2005,26(3):31.[doi:10.3969/j.issn.1000-5013.2005.01.008]
[4]田树耀,黄富贵,张彬.一种基于区域搜索的平面度误差评定方法[J].华侨大学学报(自然科学版),2009,30(5):506.[doi:10.11830/ISSN.1000-5013.2009.05.0506]
 TIAN Shu-yao,HUANG Fu-gui,ZHANG Bin.An Evaluation Method for Flatness Error Based on Region Searching[J].Journal of Huaqiao University(Natural Science),2009,30(3):506.[doi:10.11830/ISSN.1000-5013.2009.05.0506]
[5]黄富贵.直线度误差评定的测量提取点数选择[J].华侨大学学报(自然科学版),2011,32(6):615.[doi:10.11830/ISSN.1000-5013.2011.06.0615]
 HUANG Fu-gui.Study on the Number of Extraction Points for Evaluation of Straightness Error[J].Journal of Huaqiao University(Natural Science),2011,32(3):615.[doi:10.11830/ISSN.1000-5013.2011.06.0615]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(A0504002)
更新日期/Last Update: 2014-03-23