参考文献/References:
[1] Саулъев K, 袁兆鼎. 抛物型方程网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 林鹏程. 解四阶抛物型方程的绝对稳定高精度差分格式 [J]. 厦门大学学报(自然科学版), 1994(6):756-759.
[3] 曾文平. 高阶抛物型方程的具有高稳定性的显式与半显式差分格式 [J]. 应用数学学报, 1996(4):632-634.
[4] 曾文平. 解四阶抛物型方程的高精度恒稳定的隐式格式 [J]. 华侨大学学报(自然科学版), 1996(4):331-335.
[5] Mckee S. A generatization of the Du Fort-Franrkel scheme [J]. Journal of the Institute of Mathematics and Its Applications, 1972(1):76-82.
相似文献/References:
[1]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(3):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[2]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(3):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[3]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[4]郑永树,连碧龙.欧拉坐标的气动力学方程组的整体光滑解[J].华侨大学学报(自然科学版),2000,21(4):337.[doi:10.3969/j.issn.1000-5013.2000.04.002]
Zheng Yongshu,Lian Bilong.A Globally Smooth Solution of Aerodynamic Equation Set in Eulerian Coordinate[J].Journal of Huaqiao University(Natural Science),2000,21(3):337.[doi:10.3969/j.issn.1000-5013.2000.04.002]
[5]曾文平.具耗散项二阶双曲型方程分组显式方法[J].华侨大学学报(自然科学版),2001,22(3):237.[doi:10.3969/j.issn.1000-5013.2001.03.004]
Zeng Wenping.Grouping Explicit Method for Solving Second -Order Hyperbolic Equation with Term of Dissipation[J].Journal of Huaqiao University(Natural Science),2001,22(3):237.[doi:10.3969/j.issn.1000-5013.2001.03.004]
[6]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[7]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[8]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2005,26(1):19.[doi:10.3969/j.issn.1000-5013.2005.01.005]
Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2005,26(3):19.[doi:10.3969/j.issn.1000-5013.2005.01.005]
[9]单双荣.二维抛物型方程的高稳定性两层显式格式[J].华侨大学学报(自然科学版),2008,29(4):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
SHAN Shuang-rong.Two-Level Explicit Difference Schemes with Higher Stability Properties for Solving the Equation of Two-Dimensional Parabolic Type[J].Journal of Huaqiao University(Natural Science),2008,29(3):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
[10]徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
XU Jin-ping,SHAN Shuang-rong.An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(3):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]