[1]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126-129.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(2):126-129.[doi:10.3969/j.issn.1000-5013.2006.02.004]
点击复制

一类二阶中立型泛函微分方程周期解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第2期
页码:
126-129
栏目:
出版日期:
2006-04-20

文章信息/Info

Title:
On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation
文章编号:
1000-5013(2006)02-0126-04
作者:
张莉王全义
华侨大学数学系; 华侨大学数学系 福建 泉州 362021; 福建 泉州 362021
Author(s):
Zhang Li Wang Quanyi
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
中立型泛函微分方程 周期解 存在性 k-集压缩算子
Keywords:
neutral functional differential equation periodic solution existence k-set contraction operator
分类号:
O177.91
DOI:
10.3969/j.issn.1000-5013.2006.02.004
文献标志码:
A
摘要:
利用一些分析技巧及k-集压缩算子的抽象连续性原理,研究一类二阶中立型泛函微分方程周期解的存在性,得到保证该类方程周期解存在的充分条件.
Abstract:
In this paper, the existence of periodic solutions for a class of second order neutral functional differential equations is investigated by using some analytical techniques and the abstract continuation theory of k-set contractive operator. One sufficient condition is obtained.

参考文献/References:

[1] 方聪娜, 王全义. 一类具有时滞的微分系统的周期解 [J]. 华侨大学学报(自然科学版), 2003(2):119-124.doi:10.3969/j.issn.1000-5013.2003.02.002.
[2] 韩飞, 王全义. 具状态依赖时滞微分方程的周期正解 [J]. 华侨大学学报(自然科学版), 2005(4):357-360.
[3] 王根强, 燕居让. 二阶非线性中立型泛函微分方程周期解的存在性 [J]. 数学学报, 2004(3):379-384.doi:10.3321/j.issn:0583-1431.2004.02.021.
[4] 黄先开, 向子贵. 具有时滞的Duffing型方程 (t)+g(x(t-τ=p(t)的2 π周期解 [J]. 科学通报, 1994(3):201-203.
[5] Gains R E, Mawhin J L. Coincidence degree and nonlinear differential equation [M]. Berlin:Springer-Vering Press, 1977.1-100.
[6] 郭大钧. 非线性泛函分析 [M]. 济南:山东科学技术出版社, 2002.193-194.
[7] Petryshyn W V, Yu Z S. Existence theorems for higher order nonlinear periodic boundary value problems [J]. Nonlinear Analysis-Theory Methods and Applications, 1982.943-969.
[8] Liu Zhongdong, Mao Yiping. Existence theorem for periodic solutions of higher order nonlinear differential equations [J]. Journal of Mathematical Analysis and Applications, 1997.481-490.

相似文献/References:

[1]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[2]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[3]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[4]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[5]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[6]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(2):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[7]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[8]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[9]王全义.线性微分积分方程的周期解[J].华侨大学学报(自然科学版),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
 Wang Quanyi.Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
[10]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
 Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
[11]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
 ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(2):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23