[1]林珍连.拟交比同胚作为拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2006,27(1):28-30.[doi:10.3969/j.issn.1000-5013.2006.01.007]
 Lin Zhenlian.Deviation Estimation for Quasihomographies as a Quasi-Symmetric Function[J].Journal of Huaqiao University(Natural Science),2006,27(1):28-30.[doi:10.3969/j.issn.1000-5013.2006.01.007]
点击复制

拟交比同胚作为拟对称函数的偏差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第1期
页码:
28-30
栏目:
出版日期:
2006-01-20

文章信息/Info

Title:
Deviation Estimation for Quasihomographies as a Quasi-Symmetric Function
文章编号:
1000-5013(2006)01-0028-03
作者:
林珍连
华侨大学数学系 福建泉州362021
Author(s):
Lin Zhenlian
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
拟交比同胚 拟对称函数 偏差估计 单位圆
Keywords:
quasihomographies quasi-symmetric function deviation estimation unit circle
分类号:
O174.55
DOI:
10.3969/j.issn.1000-5013.2006.01.007
文献标志码:
A
摘要:
单位圆上的拟交比同胚和拟对称函数,都是拟共形映照边界值的一种几何表征.文中在Zajac等人对两者关系研究的基础上作进一步研究,改进相关结果并得到更好的上界估计.
Abstract:
Quasihomographies and quasi-symmetric function on the unit circle are geometric characterizations of boundary value of quasi-conformal mapping.The author improves some relevant results,and obtains a better estimation of upper bound.

参考文献/References:

[1] Krzyz J. Quasicircles and harmonic measure [J]. Annales Academic Scientiarum Fennicae Mathematica, 1987.19-24.
[2] Zajac J. Quasisymmetric functions and quasihomographies of the unit circle [J]. Ann Univ Mariae Curie-Sklodoska Sect(A), 1990, (10):87-99.
[3] Vuoriren M. Conformal geometry and quasiregular mapings [M]. Berlin:Springer-Verlag, 1988.1-20.
[4] 林珍连, 黄心中. 拟交比同胚的偏差估计 [J]. 华侨大学学报(自然科学版), 2001(3):232-236.doi:10.3969/j.issn.1000-5013.2001.03.003.
[5] Partyka D. The maximal value of the function [J]. Bull Soc Sci Letters Lodz 45 Ser Rechg Deform, 1995.49-55.

相似文献/References:

[1]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[2]龙波涌,黄心中.Beurling-Ahlfors延拓的伸张函数之估计[J].华侨大学学报(自然科学版),2004,25(2):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
 Long Boyong,Huang Xinzhong.Estimating Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(1):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
[3]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[4]王朝祥.Beurling-Ahlfors扩张伸张函数的估计[J].华侨大学学报(自然科学版),2009,30(1):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]
 WANG Chao-xiang.Estimates of the Dilatation Function for Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2009,30(1):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]
[5]林珍连,黄心中.拟交比同胚的偏差估计[J].华侨大学学报(自然科学版),2001,22(3):232.[doi:10.3969/j.issn.1000-5013.2001.03.003]
 Lin Zhenlian,Huang Xinzhong.Distortion Estimates for Quasihommographies[J].Journal of Huaqiao University(Natural Science),2001,22(1):232.[doi:10.3969/j.issn.1000-5013.2001.03.003]

更新日期/Last Update: 2014-03-23