[1]王全义.一类中立型泛函微分方程的概周期解及稳定性[J].华侨大学学报(自然科学版),2006,27(1):12-15.[doi:10.3969/j.issn.1000-5013.2006.01.003]
 Wang Quanyi.The Almost Periodic Solutions to a Class of Neutral Functional Differential Equations and Their Stability[J].Journal of Huaqiao University(Natural Science),2006,27(1):12-15.[doi:10.3969/j.issn.1000-5013.2006.01.003]
点击复制

一类中立型泛函微分方程的概周期解及稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第1期
页码:
12-15
栏目:
出版日期:
2006-01-20

文章信息/Info

Title:
The Almost Periodic Solutions to a Class of Neutral Functional Differential Equations and Their Stability
文章编号:
1000-5013(2006)01-0012-04
作者:
王全义
华侨大学数学系 福建泉州362021
Author(s):
Wang Quanyi
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
中立型泛函微分方程 概周期解 存在性 唯一性 稳定性
Keywords:
neutral functional differential equation almost periodic solution existence uniqueness stability
分类号:
O175.2
DOI:
10.3969/j.issn.1000-5013.2006.01.003
文献标志码:
A
摘要:
研究一类具有有限时滞的中立型泛函微分方程的概周期解的存在性、唯一性及稳定性等问题.利用指数型二分性理论和不动点方法,以及相关分析技巧,得到关于该方程的概周期解的存在性、唯一性及稳定性的新结果.
Abstract:
The work deals with the almost periodic solutions to a class of neutral functional differential equations with finite delay.By applying exponential dichotomy theory and fixed point method as well as some skills of analysis,the author obtains some new results on the existence,uniqueness and stability of almost periodic solutions to these equations.

参考文献/References:

[1] 杨喜陶, 冯春华. 一类具有无穷时滞的中立型Volterra积分微分方程概周期解的存在唯一性 [J]. 数学学报, 1997(3):359-402.
[2] 王全义. 一类中立型泛函微分方程的概周期解的存在唯一性与稳定性 [J]. 华侨大学学报(自然科学版), 2002(3):222-228.doi:10.3969/j.issn.1000-5013.2002.03.002.
[3] 王全义. 具无限时滞的积分微分方程的周期解的存在性、唯一性及稳定性 [J]. 应用数学学报, 1998(2):312-318.
[4] 郑祖庥. 泛函微分方程理论 [M]. 合肥:安徽教育出版社, 1994.204-206.

相似文献/References:

[1]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(1):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[2]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[3]王全义.正概周期解的存在性和唯一性及稳定性[J].华侨大学学报(自然科学版),1999,20(1):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
 Wang Quanyi.Existence and Uniqueness and Stability of Positive Almost Periodic Solution[J].Journal of Huaqiao University(Natural Science),1999,20(1):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
[4]王全义.微分积分方程的概周期解的存在唯一性[J].华侨大学学报(自然科学版),2001,22(1):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
 Wang Quanyi.Existence and Uniqueness of Almost Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(1):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
[5]谢惠琴,王全义.时延细胞神经网络的概周期解问题[J].华侨大学学报(自然科学版),2003,24(1):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
 Xie Huiqin,Wang Quanyi.Problem of Almost Periodic Solution to Cellular Neural Network with Time Delay[J].Journal of Huaqiao University(Natural Science),2003,24(1):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
[6]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(1):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
[7]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
 ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(1):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
[8]王全义.一类中立型泛函微分方程的概周期解的存在唯一性与稳定性[J].华侨大学学报(自然科学版),2002,23(3):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
 Wang Quanyi.Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2002,23(1):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
[9]王全义.一类中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2003,24(4):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
 Wang Quanyi.Almost Periodic Solution to a Class of Neutral Type Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2003,24(1):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
[10]方聪娜,王全义.具时滞的中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2004,25(3):247.[doi:10.3969/j.issn.1000-5013.2004.03.006]
 Fang Congna,Wang Quanyi.The Almost Periodic Solutions to Neutral Type Functional Differential Equation with Time-Delay[J].Journal of Huaqiao University(Natural Science),2004,25(1):247.[doi:10.3969/j.issn.1000-5013.2004.03.006]
[11]王全义.中立型泛函微分方程概周期解的存在唯一性[J].华侨大学学报(自然科学版),2005,26(2):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
 Wang Quanyi.Unique Existence of Almost Periodic Solutions to Neutral Type Functional Differential Equations with Finite Time-Delay[J].Journal of Huaqiao University(Natural Science),2005,26(1):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(01QZR02)
更新日期/Last Update: 2014-03-23