[1]曾文平.一类演化方程的一族高精度恒稳差分格式[J].华侨大学学报(自然科学版),2005,26(1):11-15.[doi:10.3969/j.issn.1000-5013.2005.01.003]
 Zeng Wenping.A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving a Class of Evolution Equations[J].Journal of Huaqiao University(Natural Science),2005,26(1):11-15.[doi:10.3969/j.issn.1000-5013.2005.01.003]
点击复制

一类演化方程的一族高精度恒稳差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第1期
页码:
11-15
栏目:
出版日期:
2005-01-20

文章信息/Info

Title:
A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving a Class of Evolution Equations
文章编号:
1000-5013(2005)01-0011-05
作者:
曾文平
华侨大学数学系 福建泉州362021
Author(s):
Zeng Wenping
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
演化方程 差分格式 高精度 绝对稳定
Keywords:
evolution equation difference scheme high accuracy absolutely stable
分类号:
O175
DOI:
10.3969/j.issn.1000-5013.2005.01.003
文献标志码:
A
摘要:
对一类演化方程 u t=a 2m + 1 x1m + 1(a为常数,m =1,2,… ),构造一族含双参数的三层高精度隐式差分格式 .当参数α =12,β =0时,得到一个双层格式 证明对一切正整数m,该格式对任意非负参数α≥ 0,β≥ 0都是绝对稳定的,并且其截断误差阶为O((Δt) 2 +(Δx) 6) .数值例子表明,所建立的差分格式是有效的,理论分析与实际计算相吻合
Abstract:
A family of three layered and highly accurate implicit difference schemes containing two parameters are constructed for solving a class of evolution equations  u  t=a  2m+1  x 1m+1,where a is a constant, m equals to 1, 2, …. A two layered scheme is obtained when parameters α =1/2, β =0. These schemes are proved to be absolutely stable for all positive integers m and for arbitrarily chosen non negative parameters α≥0, β ≥0; and their truncation errors are all in the order of O(( Δ t) 2+( Δ x) 6) . The difference schemes establishing in this paper are shown by numerical examples to be effective, their practical computation is shown to be consistent with theoretical analysis.

参考文献/References:

[1] 屠规彰, 秦孟兆. 非线性演化方程的不变群与守恒律--对称函数方法 [J]. 中国科学, 1980(5):421-432.
[2] 秦孟兆. 一类演化方程ut=αuqu1+aup的差分格式 [J]. 科学通报, 1982(5):261-263.
[3] 曾文平. 一类演化方程的高稳定性的差分格式 [J]. 计算物理, 1995(4):565-570.
[4] 曾文平. 高阶发展方程的两类显式格式的稳定性分析 [J]. 华侨大学学报(自然科学版), 1996(3):231-235.
[5] 曾文平. 两类新的高稳定性的三层显式差分格式 [J]. 华侨大学学报(自然科学版), 1998(3):225-231.
[6] Cayлbeв K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-153.
[7] 曾文平. 高阶抛物型方程的具有高稳定性的显式与半显式差分格式 [J]. 应用数学学报, 1996(4):631-634.
[8] 曾文平. 解色散方程u=auxxx的一族绝对稳定的高精度的差分格式 [J]. 计算数学, 1987(4):403-410.
[9] MILLER J J H. On the location of zeros certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(8):397-406.doi:10.1093/imamat/8.3.397.
[10] Rihtmyer R D, Morton K W. Difference methods for initial-value problems [M]. New York:wiley, 1967.36-80.

相似文献/References:

[1]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(1):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[2]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(1):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[3]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(1):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[4]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[5]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(1):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[6]单双荣.高阶Schringer方程的显式差分格式[J].华侨大学学报(自然科学版),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
 Shan Shuangrong.Explicit Difference Schemes for Solving Higher-Order Schringer Equation[J].Journal of Huaqiao University(Natural Science),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
[7]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[8]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[9]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[10]曾文平.Schrdinger方程一族高精度恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(3):237.[doi:10.3969/j.issn.1000-5013.2004.03.003]
 Zeng Wenping.A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving Schrdinger Equation[J].Journal of Huaqiao University(Natural Science),2004,25(1):237.[doi:10.3969/j.issn.1000-5013.2004.03.003]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(04ZQR09)
更新日期/Last Update: 2014-03-23