[1]黄浪扬,郑小红.梁振动方程的多辛Preissman格式[J].华侨大学学报(自然科学版),2004,25(4):360-365.[doi:10.3969/j.issn.1000-5013.2004.04.006]
 Huang Langyang,Zheng Xiaohong.Multi-Symplectic Preissman Scheme for Solving Vibration Equation of Beams[J].Journal of Huaqiao University(Natural Science),2004,25(4):360-365.[doi:10.3969/j.issn.1000-5013.2004.04.006]
点击复制

梁振动方程的多辛Preissman格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第4期
页码:
360-365
栏目:
出版日期:
2004-10-20

文章信息/Info

Title:
Multi-Symplectic Preissman Scheme for Solving Vibration Equation of Beams
文章编号:
1000-5013(2004)04-0360-06
作者:
黄浪扬郑小红
华侨大学数学系; 华侨大学数学系 福建泉州362021; 福建泉州362021
Author(s):
Huang Langyang Zheng Xiaohong
Dept. of Math., Huaqiao Univ., 362021, Quanzhou, China
关键词:
梁振动方程 多辛 守恒律 稳定性 收敛性
Keywords:
vibration equation of beams multi-symplectic law of conservation stability convergence
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2004.04.006
文献标志码:
A
摘要:
考虑梁振动方程的一个多辛形式,并利用中点公式得到一个等价于多辛Preissman积分的新格式,用Fourier分析法,证明该格式是无条件稳定的 .最后给出数值例子 .数值例子表明,文中所给的格式是有效的,且理论分析与实际计算相吻合
Abstract:
For solving vibration equation of beams, a symplectic form is considered; and a new scheme equivalent to multi-symplectic Preissman integrator is obtained by using midpoint formula; and the scheme is proved to be unconditionally stable by using the method of Fourier analysis. The scheme is effective and theoretical analysis coincides with actual calculation, as shown by numerical examples which are given finally.

参考文献/References:

[1] Feng Kang. Difference schemes for Hamiltonian formulism and symplectic geometry [J]. Journal of Computational Mathematics, 1986(3):279-289.
[2] Feng Kang, Qin Mengzhao. The symplectic methods for the computation of Hamiltonian equations. In [A]. Berlin:Springer, 1987.1-37.
[3] Feng Kang. On difference schemes and symplectic geometry. In [A]. Beijing:Science Press, 1985.42-58.
[4] Bridges T J, Reich S. Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A, 2001, (4-5):184-193.
[5] Bridges T J. Multi-symplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[6] 李荣华, 冯果忱. 微分方程数值解法 [M]. 北京:人民教育出版社, 1980.308-380.
[7] 矢(山鸟)信男, 野木達夫, 王宝兴. 发展方程的数值分析 [M]. 北京:人民教育出版社, 1983.36-106.

相似文献/References:

[1]郭峰.IMBq方程的多辛格式及其守恒律[J].华侨大学学报(自然科学版),2005,26(4):343.[doi:10.3969/j.issn.1000-5013.2005.04.003]
 Guo Feng.Multi-Symplectic Scheme for IMBq Equation and the Conservation Laws to Which It Subjects[J].Journal of Huaqiao University(Natural Science),2005,26(4):343.[doi:10.3969/j.issn.1000-5013.2005.04.003]
[2]单双荣.梁振动方程的多辛Fourier拟谱算法[J].华侨大学学报(自然科学版),2006,27(3):234.[doi:10.3969/j.issn.1000-5013.2006.03.003]
 Shan Shuangrong.Multi-Symplectic Fourier Pseudo-Spectral Method for Vibrations of Beams[J].Journal of Huaqiao University(Natural Science),2006,27(4):234.[doi:10.3969/j.issn.1000-5013.2006.03.003]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(02QZR07)
更新日期/Last Update: 2014-03-23