参考文献/References:
[1] 吉泽太朗, 郑祖庥, 陈纪鹏. 稳定性理论与周期解和概周期解的存在性 [M]. 南宁:广西人民出版社, 1985.150-195.
[2] 林振声. 概周期微分方程与积分流形 [M]. 上海:上海科学技术出版社, 1986.100-200.
[3] 何崇佑. 概周期微分方程 [M]. 北京:高等教育出版社, 1992.80-280.
[4] 王全义. 概周期解的存在性、唯一性与稳定性 [J]. 数学学报, 1997(1):80-89.
[5] Wang Quanyi. The existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays [J]. Chinese Annals of Mathematics, 1997(2):233-242.
[6] 周宗福. 一类高维滞后型泛函微分方程的周期解 [J]. 数学杂志, 2002(4):423-430.doi:10.3969/j.issn.0255-7797.2002.04.011.
[7] Fink A M. Almost periodic differential equations [M]. New York: Springer-Verlag, 1974.125-127.
相似文献/References:
[1]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[2]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[3]王全义.正概周期解的存在性和唯一性及稳定性[J].华侨大学学报(自然科学版),1999,20(1):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
Wang Quanyi.Existence and Uniqueness and Stability of Positive Almost Periodic Solution[J].Journal of Huaqiao University(Natural Science),1999,20(3):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
[4]王全义.微分积分方程的概周期解的存在唯一性[J].华侨大学学报(自然科学版),2001,22(1):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
Wang Quanyi.Existence and Uniqueness of Almost Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(3):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
[5]谢惠琴,王全义.时延细胞神经网络的概周期解问题[J].华侨大学学报(自然科学版),2003,24(1):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
Xie Huiqin,Wang Quanyi.Problem of Almost Periodic Solution to Cellular Neural Network with Time Delay[J].Journal of Huaqiao University(Natural Science),2003,24(3):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
[6]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(3):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
[7]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(3):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
[8]王全义.一类中立型泛函微分方程的概周期解的存在唯一性与稳定性[J].华侨大学学报(自然科学版),2002,23(3):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
Wang Quanyi.Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
[9]王全义.一类中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2003,24(4):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
Wang Quanyi.Almost Periodic Solution to a Class of Neutral Type Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2003,24(3):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
[10]王全义.中立型泛函微分方程概周期解的存在唯一性[J].华侨大学学报(自然科学版),2005,26(2):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
Wang Quanyi.Unique Existence of Almost Periodic Solutions to Neutral Type Functional Differential Equations with Finite Time-Delay[J].Journal of Huaqiao University(Natural Science),2005,26(3):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
[11]王全义.一类中立型泛函微分方程的概周期解及稳定性[J].华侨大学学报(自然科学版),2006,27(1):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]
Wang Quanyi.The Almost Periodic Solutions to a Class of Neutral Functional Differential Equations and Their Stability[J].Journal of Huaqiao University(Natural Science),2006,27(3):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]