[1]方聪娜,王全义.具时滞的中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2004,25(3):247-250.[doi:10.3969/j.issn.1000-5013.2004.03.006]
 Fang Congna,Wang Quanyi.The Almost Periodic Solutions to Neutral Type Functional Differential Equation with Time-Delay[J].Journal of Huaqiao University(Natural Science),2004,25(3):247-250.[doi:10.3969/j.issn.1000-5013.2004.03.006]
点击复制

具时滞的中立型泛函微分方程的概周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第3期
页码:
247-250
栏目:
出版日期:
2004-07-20

文章信息/Info

Title:
The Almost Periodic Solutions to Neutral Type Functional Differential Equation with Time-Delay
文章编号:
1000-5013(2004)03-0247-04
作者:
方聪娜王全义
集美大学基础教学部; 华侨大学数学系 福建厦门361021; 福建泉州362021
Author(s):
Fang Congna1 Wang Quanyi2
1.Dept. of Basic Courses, Jimei Univ., 361021, Xiamen, China; 2.Dept. of Math., Huaqiao Univ., 362021, Quanzhou, China
关键词:
中立型泛函微分方程 概周期解 存在性 唯一性 稳定性
Keywords:
neutral type functional differential equation almost periodic solution existence uniqueness stability
分类号:
O177
DOI:
10.3969/j.issn.1000-5013.2004.03.006
文献标志码:
A
摘要:
研究一类具时滞的中立型泛函微分方程的概周期解,利用不动点定理及指数型二分性,得到其概周期解的存在唯一性及稳定性
Abstract:
A study is made on the almost periodic solutions to a class of neutral type functional differential equations with time delay. By using fixed point theorem and exponential type dichotomy, the authors obtain unique existence of the almost periodic solutions and their stability.

参考文献/References:

[1] 吉泽太朗, 郑祖庥, 陈纪鹏. 稳定性理论与周期解和概周期解的存在性 [M]. 南宁:广西人民出版社, 1985.150-195.
[2] 林振声. 概周期微分方程与积分流形 [M]. 上海:上海科学技术出版社, 1986.100-200.
[3] 何崇佑. 概周期微分方程 [M]. 北京:高等教育出版社, 1992.80-280.
[4] 王全义. 概周期解的存在性、唯一性与稳定性 [J]. 数学学报, 1997(1):80-89.
[5] Wang Quanyi. The existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays [J]. Chinese Annals of Mathematics, 1997(2):233-242.
[6] 周宗福. 一类高维滞后型泛函微分方程的周期解 [J]. 数学杂志, 2002(4):423-430.doi:10.3969/j.issn.0255-7797.2002.04.011.
[7] Fink A M. Almost periodic differential equations [M]. New York: Springer-Verlag, 1974.125-127.

相似文献/References:

[1]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[2]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[3]王全义.正概周期解的存在性和唯一性及稳定性[J].华侨大学学报(自然科学版),1999,20(1):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
 Wang Quanyi.Existence and Uniqueness and Stability of Positive Almost Periodic Solution[J].Journal of Huaqiao University(Natural Science),1999,20(3):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
[4]王全义.微分积分方程的概周期解的存在唯一性[J].华侨大学学报(自然科学版),2001,22(1):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
 Wang Quanyi.Existence and Uniqueness of Almost Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(3):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
[5]谢惠琴,王全义.时延细胞神经网络的概周期解问题[J].华侨大学学报(自然科学版),2003,24(1):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
 Xie Huiqin,Wang Quanyi.Problem of Almost Periodic Solution to Cellular Neural Network with Time Delay[J].Journal of Huaqiao University(Natural Science),2003,24(3):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
[6]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(3):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
[7]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
 ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(3):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
[8]王全义.一类中立型泛函微分方程的概周期解的存在唯一性与稳定性[J].华侨大学学报(自然科学版),2002,23(3):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
 Wang Quanyi.Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):222.[doi:10.3969/j.issn.1000-5013.2002.03.002]
[9]王全义.一类中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2003,24(4):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
 Wang Quanyi.Almost Periodic Solution to a Class of Neutral Type Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2003,24(3):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
[10]王全义.中立型泛函微分方程概周期解的存在唯一性[J].华侨大学学报(自然科学版),2005,26(2):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
 Wang Quanyi.Unique Existence of Almost Periodic Solutions to Neutral Type Functional Differential Equations with Finite Time-Delay[J].Journal of Huaqiao University(Natural Science),2005,26(3):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
[11]王全义.一类中立型泛函微分方程的概周期解及稳定性[J].华侨大学学报(自然科学版),2006,27(1):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]
 Wang Quanyi.The Almost Periodic Solutions to a Class of Neutral Functional Differential Equations and Their Stability[J].Journal of Huaqiao University(Natural Science),2006,27(3):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(01QZR02)
更新日期/Last Update: 2014-03-23