[1]曾文平.Schrdinger方程一族高精度恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(3):237-240.[doi:10.3969/j.issn.1000-5013.2004.03.003]
 Zeng Wenping.A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving Schrdinger Equation[J].Journal of Huaqiao University(Natural Science),2004,25(3):237-240.[doi:10.3969/j.issn.1000-5013.2004.03.003]
点击复制

Schrdinger方程一族高精度恒稳差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第3期
页码:
237-240
栏目:
出版日期:
2004-07-20

文章信息/Info

Title:
A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving Schrdinger Equation
文章编号:
1000-5013(2004)03-0237-04
作者:
曾文平
华侨大学数学系 福建泉州362021
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362021, Quanzhou, China
关键词:
Schrdinger方程 差分格式 高精度 绝对隐定
Keywords:
Schrdinger equation difference scheme high accuracy absolutely stable
分类号:
O411.1
DOI:
10.3969/j.issn.1000-5013.2004.03.003
文献标志码:
A
摘要:
Schrodinger方程 u t=i 2 u x2,可构造一族含双参数的三层高精度隐式差分格式 当参数α =1/ 2,β =0时得到一个双层格式 证明该格式对任意非负参数α≥ 0,β≥ 0都是绝对稳定的,并且其截断误差阶为O(Δt2 +Δx4) 数值例子表明,文中所建立的差分格式是有效的,理论分析与实际计算相吻合
Abstract:
For solving Schrdinger equation u t =i 2 ux2, it is feasible to construct a family of three layer, high accurate and implicit difference schemes containing two parameters. A three layer difference scheme is obtained in case α =12 and β =0; and this difference scheme is proved to be absolutely stable for arbitrarily chosen non negative parameter, with its truncation error in the order of O( Δ t 2+Δ x 4). The difference scheme constructing here is proved by numerical example to be effective, and its theoretical analysis tallies with practical computation.

参考文献/References:

[1] Chan T F, Lee D, Shen L J. Stable explicit scheme for equation of the Schrdinger type [J]. SIAM Journal on Numerical Analysis, 1986(2):274-281.doi:10.1137/0723019.
[2] 林鹏程. Schrdinger型方程的三层显式格式 [J]. 计算数学, 1988(3):328-331.
[3] MILLER J J H. On the location of zeros of certain classes of polynonials with applications to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(8):397-406.doi:10.1093/imamat/8.3.397.

相似文献/References:

[1]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(3):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[2]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(3):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[3]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[4]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(3):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[5]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(3):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[6]单双荣.高阶Schringer方程的显式差分格式[J].华侨大学学报(自然科学版),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
 Shan Shuangrong.Explicit Difference Schemes for Solving Higher-Order Schringer Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
[7]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[8]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[9]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(3):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[10]曾文平.一类演化方程的一族高精度恒稳差分格式[J].华侨大学学报(自然科学版),2005,26(1):11.[doi:10.3969/j.issn.1000-5013.2005.01.003]
 Zeng Wenping.A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving a Class of Evolution Equations[J].Journal of Huaqiao University(Natural Science),2005,26(3):11.[doi:10.3969/j.issn.1000-5013.2005.01.003]

更新日期/Last Update: 2014-03-23