[1]谢惠琴,王全义.时延细胞神经网络的指数稳定性和周期解[J].华侨大学学报(自然科学版),2004,25(1):22-25.[doi:10.3969/j.issn.1000-5013.2004.01.006]
 Xie Huiqin,Wang Quanyi.Exponential Stability and Periodic Solution for Cellular Neural Networks with Time Delay[J].Journal of Huaqiao University(Natural Science),2004,25(1):22-25.[doi:10.3969/j.issn.1000-5013.2004.01.006]
点击复制

时延细胞神经网络的指数稳定性和周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第1期
页码:
22-25
栏目:
出版日期:
2004-01-20

文章信息/Info

Title:
Exponential Stability and Periodic Solution for Cellular Neural Networks with Time Delay
文章编号:
1000-5013(2004)01-0022-04
作者:
谢惠琴王全义
华侨大学数学系; 华侨大学数学系 福建泉州362011; 福建泉州362011
Author(s):
Xie Huiqin Wang Quanyi
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
细胞神经网络 Lyapunov泛函 周期解 全局指数稳定性
Keywords:
cellular neural networks Lyapunov function periodic solution globally exponential stability
分类号:
O29
DOI:
10.3969/j.issn.1000-5013.2004.01.006
文献标志码:
A
摘要:
研究时延细胞神经网络周期解的存在性和全局指数稳定性问题 .巧妙地引入可调实参数di>0 (1,2,…,n),通过构造Lyapunov泛函并结合有效的分析技巧,给出新的充分准则 .所得的结果,推广和改进已有报道的相关结果 .这些准则可用于设计全局指数稳定的和周期振荡的具时滞的神经网络,扩大神经网络设计的范围 .
Abstract:
A study is made on the existence of periodic solution and globally exponential stability of cellular neural network with time delay. Some new sufficient criteria are given by ingeniously leading adjustable real parameters d i>0(i=1,2,...,n ), and by constructing lyapunov functional in combination with some skills of analysis. With the authors’ results, the related results in the reported literatures can be entended and improved. These criteria can be applied to the design of globally exponential stable and periodically oscillatory neural network with time delay. They broaden the design of neural network.

参考文献/References:

[1] Van-Den D P, Zhou Xingfu. Global attractivity in delayed Hopfield neural network models [J]. SIAM Journal on Applied Mathematics, 1998(6):1878-1890.
[2] 梁学斌, 吴立德. Hopfield型神经网络的全局指数稳定性及其应用 [J]. 中国科学A辑, 1995(5):523-532.
[3] 曹进德. 时延细胞神经网络的指数稳定性和周期解 [J]. 中国科学E辑, 2000(6):541-549.doi:10.3321/j.issn:1006-9275.2000.06.009.
[4] Cao Jinde. Periodic solutions and exponential stability in delayed cellular neural networks [J]. Physical Review A, 1999, (11):3244-3248.doi:10.1103/PhysRevE.60.3244.
[5] 王林山, 徐道义. Hopfield型时滞神经网络的稳定性分析 [J]. 应用数学和力学, 2002(1):59-64.doi:10.3321/j.issn:1000-0887.2002.01.008.
[6] 曹进德, 李继彬. 具有交互神经传递时滞的神经网络的稳定性 [J]. 应用数学和力学, 1998(4):425-430.
[7] 沈轶, 廖晓昕. 广义的时滞细胞神经网络的动态分析 [J]. 电子学报, 1999, (10):62-64.doi:10.3321/j.issn:0372-2112.1999.10.017.
[8] Zhou Dongming, Cao Jinde, Li Jibin. Stability analysis of Hopfield neural networks with delays [J]. Annals of Differential Equations, 1998(2):460-467.
[9] 侯学刚. 时滞细胞神经网络模型的全局吸引性和全局指数稳定性 [J]. 四川师范大学学报(自然科学版), 2002(4):358-361.doi:10.3969/j.issn.1001-8395.2002.04.009.
[10] FANG Hui. Periodic solutions and stability analysis for neural networks with time-varying delay [J]. Annals of Differential Equations, 2001(4):318-328.
[11] Driver R D. Ordinary and Delay Differential Equations [M]. New York. Springer-Verlag, 1977.300-312.

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(01QZR02)
更新日期/Last Update: 2014-03-23