[1]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345-348.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(4):345-348.[doi:10.3969/j.issn.1000-5013.2003.04.002]
点击复制

分段拟对称为整体拟对称函数的偏差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第4期
页码:
345-348
栏目:
出版日期:
2003-10-20

文章信息/Info

Title:
Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One
文章编号:
1000-5013(2003)04-0345-04
作者:
王朝祥黄心中
华侨大学数学系; 华侨大学数学系 福建泉州362011; 福建泉州362011
Author(s):
Wang Chaoxiang Huang Xinzhong
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
拟对称函数 拟共形映照 偏差
Keywords:
quasi symmetric function quasi conformal mapping distortion
分类号:
O189
DOI:
10.3969/j.issn.1000-5013.2003.04.002
文献标志码:
A
摘要:
进一步研究分段拟对称函数转化为整体拟对称函数的条件 .在相邻区间上关于连接点对称的偏差,限制了整体拟对称偏差的界限 .改进了有关论述分段与整体拟对称函数之间关系所得到的结果
Abstract:
For a piecewise quasi symmetric function to be turned into a global quasi symmetric function, the distortion of this function in relation to the symmetry of junction at adjacent interval plays decisive role; and restricts the bound of global quasi symmetric distortion. In this paper, this distortion bound is further estimated; and the recent results of the authors’ own are improved.

参考文献/References:

[1] Ahlfors L V. Lectures on quasiconformal mappings [M]. New York: Van Nostrand, 1966.63-84.
[2] Beurling A, Ahlfors L. The boundary correspondence under quasiconformal mappings [J]. Acta Mathematica, 1956.125-142.doi:10.1007/BF02392360.
[3] HEINONEN J, Hinkkanen A. Quasiconformal maps between compact polyhedra are quasisymmetric [J]. Indiana University Mathematics Journal, 1996.997-1019.
[4] Hinkkanen A. Asymptotic extremal growth of quasisymmetric functions [J]. Annales Academic Scientiarum Fennicae Mathematica, 1986.295-320.
[5] Visl J. Quasimbius maps [J]. Journal D’Analyse Mathematique, 1984.218-234.doi:10.1007/BF02790198.
[6] 黄心中. 分段与整体拟对称函数之间的关系 [J]. 华侨大学学报(自然科学版), 1999(1):1-5.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(4):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(4):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[3]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(4):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[4]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(4):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[5]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[6]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[7]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[8]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[9]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(4):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[10]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
 PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]

备注/Memo

备注/Memo:
国务院侨务办公室重点科研基金资助项目(01QZR01)
更新日期/Last Update: 2014-03-23