[1]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136-142.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):136-142.[doi:10.3969/j.issn.1000-5013.2003.02.005]
点击复制

解四阶杆振动方程新的两类隐式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第2期
页码:
136-142
栏目:
出版日期:
2003-04-20

文章信息/Info

Title:
Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order
文章编号:
1000-5013(2003)02-0136-07
作者:
曾文平
华侨大学数学系 福建泉州362011
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
四阶杆振动方程 隐式差分格式 无条件稳定
Keywords:
rod vibration equation implicit difference scheme unconditionally stable
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2003.02.005
文献标志码:
A
摘要:
提出解四阶杆振动方程 2 u t2 +a2 4u x4=0 (其中 a为常数 )的两类新的四层隐式差分格式 .这两类格式都是无条件稳定的,其局部截数误差阶分别为 O(τ2 +h2 ),O(τ2 +h2 +(τh) 2 ) .进而在特殊情况下,得到一个四层显式差分格式,其稳定性条件为 r=aτ/h2 ≤ 12 .数值例子表明,这两类格式是有效的
Abstract:
Two new classes of four level implicit difference schemes are advanced for solving rod vibration equation of four order  2ut 2+a 2 4ux 4=0, where a is a constant. These schemes are unconditionally stable, with O(τ 2+h 2) and O(τ 2h 2+(τh) 2) as respective local truncation error. Moreover, a four level explicit difference scheme is obtained under special case, with r=aτ/h 2≤12 as its stability condition. These schemes are indicated by numerical example to be effective.

参考文献/References:

[1] 秦元勋. 计算物理学 [M]. 成都:四川科学技术出版社, 1984.87-192.
[2] 李荣华, 冯果忱. 微分方程数值解 [M]. 北京:高等教育出版社, 1980.374-376.
[3] Khaliq A Q M, Twizell E H. A family of second order methods for variable coefficient fourth order partial differential equations in-tern [J]. Computers and Mathematics, 1987.1-7.
[4] 胡承列. 解弹性体振动方程的几个差分格式 [J]. 华东师范大学学报(自然科学版), 1991(2):29-36.
[5] 马驷良, 徐桢殷. 实系数三、四次多项式是Von Neumann多项式的充要条件 [J]. 高等学校计算数学学报, 1984(3):274-280.
[6] 矢岛信男, 野术达夫. 发展方程の数值解析 [M]. 东京:岩波书店, 1977.46-232.

相似文献/References:

[1]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[2]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[3]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[4]曾文平.四阶杆振动方程的含参数四层显式格式[J].华侨大学学报(自然科学版),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
 Zeng Wenping.Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration[J].Journal of Huaqiao University(Natural Science),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
[5]黄浪扬.四阶杆振动方程的tanh(x)辛格式[J].华侨大学学报(自然科学版),2002,23(3):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
 Huang Langyang.Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)[J].Journal of Huaqiao University(Natural Science),2002,23(2):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
[6]黄浪扬.四阶杆振动方程的sinh(x)蛙跳辛格式[J].华侨大学学报(自然科学版),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
 Huang Langyang.Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
[7]黄浪扬.四阶杆振动方程的cosh(x)显式辛格式[J].华侨大学学报(自然科学版),2003,24(3):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]
 Huang Langyang.Explicit Symplectic Scheme of Four-Order Rod Vibration Equation via Function cosh(x)[J].Journal of Huaqiao University(Natural Science),2003,24(2):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]
[8]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[9]曾文平.解双抛物型方程的两类恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(1):14.[doi:10.3969/j.issn.1000-5013.2004.01.004]
 Zeng Wenping.Two Classes of Steady Difference Schemes for Solving Biparabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(2):14.[doi:10.3969/j.issn.1000-5013.2004.01.004]
[10]曾文平.解高阶抛物型方程的一族隐式差分格式[J].华侨大学学报(自然科学版),2005,26(3):235.[doi:10.3969/j.issn.1000-5013.2005.03.003]
 Zeng Wenping.A Family of Implicit Difference Schemes for Solving the Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),2005,26(2):235.[doi:10.3969/j.issn.1000-5013.2005.03.003]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(01HZR04)
更新日期/Last Update: 2014-03-23