[1]伍锦棠,郑永树.带非线性松弛项的半线性双曲组的整体光滑解[J].华侨大学学报(自然科学版),2003,24(2):131-135.[doi:10.3969/j.issn.1000-5013.2003.02.004]
 Wu Jintang,Zheng Yongshu.Globally Smooth Solution to a Semi-Linear Hyperbolic System with a Nonlinear Relaxation Term[J].Journal of Huaqiao University(Natural Science),2003,24(2):131-135.[doi:10.3969/j.issn.1000-5013.2003.02.004]
点击复制

带非线性松弛项的半线性双曲组的整体光滑解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第2期
页码:
131-135
栏目:
出版日期:
2003-04-20

文章信息/Info

Title:
Globally Smooth Solution to a Semi-Linear Hyperbolic System with a Nonlinear Relaxation Term
文章编号:
1000-5013(2003)02-0131-05
作者:
伍锦棠郑永树
华侨大学数学系; 华侨大学数学系 福建泉州362011; 福建泉州362011
Author(s):
Wu Jintang Zheng Yongshu
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
半线性双曲组 松弛 柯西问题 整体光滑解
Keywords:
semi linear hyperbolic system relaxation Cauchy problem globally smooth solution
分类号:
O175.29
DOI:
10.3969/j.issn.1000-5013.2003.02.004
文献标志码:
A
摘要:
研究一类带非线性松弛项的半线性双曲组的柯西问题,对 C′模有界的初值,证明其存在唯一的整体光滑解
Abstract:
A study is made on the Cauchy problem of a class of semi linear hyperbolic system with a nonlinear relaxation term. The globally smooth solution is proved to be uniquely existed in the initial value with bounded C 1 norm.

参考文献/References:

[1] Liu Taiping. Hyperbolic conservation laws with relaxation [J]. Communications in Mathematical Physics, 1987.153-175.doi:10.1007/BF01210707.
[2] Jin Shi, Xin Zhouping. The relaxation scheme for systems of conservation laws in arbitrary space dimensions [J]. Communications on Pure and Applied Mathematics, 1995.235-276.doi:10.1002/cpa.3160480303.
[3] Zhu Changjiang, Yang Tong. Existence and non-existence of global smooth solutions for P-system with relaxation [J]. J D E, 2000, (2):321-336.doi:10.1006/jdeq.2000.3710.
[4] Li Caizhong, Liu Fagui. P-systems with relaxation [J]. 应用数学学报, 1997.61-69.
[5] Zhao Huijiang. Nonlinear stability of strong planar rarefaction waves for the relaxation approximation of conservation laws in several space dimensions [J]. J D E, 2000, (1):198-222.doi:10.1006/jdeq.1999.3722.
[6] Roberto Natalini. Covergence to equilibrium for the relaxation approximations of conservation laws [J]. Communications on Pure and Applied Mathematics, 1996.795-823.doi:10.1002/(SICI)1097-0312(199608)49:8< 795::AID-CPA2> 3.0.CO; 2-3.
[7] Luo Tao. Asymptotic stability of planer rarefaction waves for the relaxation approximation of conservation laws in several dimensions [J]. J D E, 1997.255-279.doi:10.1006/jdeq.1996.3214.
[8] Matsumura A, Nishihara K. Global stability of the rarefaction waves of a one-dimensional modelsystem for compressible visous gas [J]. Communications in Mathematical Physics, 1992.325-335.doi:10.1007/BF02101095.
[9] Corrado M, Roberto N. L1 nolinear stability of traveling waves for a hyperbolic system with relaxation [J]. J D E, 1996.275-292.doi:10.1006/jdeq.1996.0180.
[10] Liu Hailiang. The Lp stability of relaxation rarefaction profiles [J]. J D E, 2001, (2):397-411.doi:10.1006/jdeq.2000.3849.
[11] Bressan A, Marson A. Maximum principle for optimally controlled systems of conservation laws [J]. Rendiconti del Seminario Matematico della Università di Padova, 1995.74-94.
[12] Douglis A. Existence theorems for hyperbolic systems [J]. Communications on Pure and Applied Mathematics, 1952.119-154.

相似文献/References:

[1]潘晓明,余俊,杨钊,等.一种将线性粘弹微分型本构方程应用到ABAQUS的方法[J].华侨大学学报(自然科学版),2010,31(5):570.[doi:10.11830/ISSN.1000-5013.2010.05.0570]
 PAN Xiao-ming,YU Jun,YANG Zhao,et al.A Method Using Linear Viscoelastic Differential Constitutive Equation into ABAQUS[J].Journal of Huaqiao University(Natural Science),2010,31(2):570.[doi:10.11830/ISSN.1000-5013.2010.05.0570]

更新日期/Last Update: 2014-03-23