[1]黄浪扬.四阶杆振动方程的sinh(x)蛙跳辛格式[J].华侨大学学报(自然科学版),2003,24(2):125-130.[doi:10.3969/j.issn.1000-5013.2003.02.003]
 Huang Langyang.Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):125-130.[doi:10.3969/j.issn.1000-5013.2003.02.003]
点击复制

四阶杆振动方程的sinh(x)蛙跳辛格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第2期
页码:
125-130
栏目:
出版日期:
2003-04-20

文章信息/Info

Title:
Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order
文章编号:
1000-5013(2003)02-0125-06
作者:
黄浪扬
华侨大学数学系 福建泉州362011
Author(s):
Huang Langyang
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
四阶杆振动方程 Hamilton方程组 函数sinh(x) 辛格式
Keywords:
rod vibration equation of four order Hamiltonian equations function sinh( x ) symplectic scheme
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2003.02.003
文献标志码:
A
摘要:
利用 Hyperbolic函数 sinh(x),构造四阶杆振动方程的任意阶精度的辛格式,并进行了稳定性分析
Abstract:
By using hyperbolic function sinh( x ), the author constructs symplectic schemes with precision of arbitrary order for the rod vibration equation of four order; and analyses their stability.

参考文献/References:

[1] Feng Kang, Qin Mengzhao. The symplectic methods for the computation of Hamiltonian equations [A]. Berlin:Springer, 1987.1-37.
[2] Feng Kang. On difference schemes and symplectic geometry [A]. 北京:科学出版社, 1985.42-58.
[3] 秦孟兆. 波动方程两种哈密顿型蛙跳格式 [J]. 计算数学, 1988(3):272-281.
[4] Qin Mengzhao, Zhu Wenjie. Construction of symplectic schemes for wave equations via hyperbolic functions sinh(x) cosh(x) tanh(x) [J]. Computers & Mathematics with Applications, 1993(8):1-11.
[5] 黄浪扬. 四阶杆振动方程的tanh(x)辛算法 [J]. 华侨大学学报(自然科学版), 2002(3):217-221.doi:10.3969/j.issn.1000-5013.2002.03.001.
[6] Ge Zhong, Feng Kang. On the approximation of linear Hamiltonian systems [J]. Journal of Computational Mathematics, 1988(1):88-97.
[7] Miller J H. On the location of zeros of certain class of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(4):397-409.doi:10.1093/imamat/8.3.397.

相似文献/References:

[1]曾文平.四阶杆振动方程的含参数四层显式格式[J].华侨大学学报(自然科学版),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
 Zeng Wenping.Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration[J].Journal of Huaqiao University(Natural Science),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
[2]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
[3]黄浪扬.四阶杆振动方程的tanh(x)辛格式[J].华侨大学学报(自然科学版),2002,23(3):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
 Huang Langyang.Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)[J].Journal of Huaqiao University(Natural Science),2002,23(2):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
[4]黄浪扬.四阶杆振动方程的cosh(x)显式辛格式[J].华侨大学学报(自然科学版),2003,24(3):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]
 Huang Langyang.Explicit Symplectic Scheme of Four-Order Rod Vibration Equation via Function cosh(x)[J].Journal of Huaqiao University(Natural Science),2003,24(2):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(01HZR04)
更新日期/Last Update: 2014-03-23