[1]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22-26.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(1):22-26.[doi:10.3969/j.issn.1000-5013.2003.01.004]
点击复制

对流方程一族新的三层双参数高精度格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第1期
页码:
22-26
栏目:
出版日期:
2003-01-20

文章信息/Info

Title:
A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation
文章编号:
1000-5013(2003)01-0022-05
作者:
曾文平
华侨大学数学系 福建泉州362011
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
对流方程 高精度 绝对稳定 差分格式
Keywords:
convection equation high accuracy absolutely stable difference scheme
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2003.01.004
文献标志码:
A
摘要:
对对流方程 ut=aux(其中 a为常数 ),构造一族新的含双参数高精度的三层差分格式 .当参数α=12,β=0时,得到一个双层格式 .这些格式对任意选取的非负参数都是绝对稳定的,其局部截断误差阶为 O((Δt) 2 +(Δt) 2 (Δx) 2 +(Δx) 6) .数值试验表明,所建立的差分格式是有效的,理论分析是正确的 .
Abstract:
For solving convection equation u t=au x, where a is a constant, a new family of three-layer and biparametric difference schemes with high accuracy are constructed; and a double layer scheme will be obtained in case α =12 and β =0. All these schemes are absolutely stable for non negative parameters chosen arbitrarily with the local truncation error of O((Δ t ) 2+(Δt) 2(Δ x ) 2+(Δ x ) 6). As indicated by numerical experimentation, the difference schemes so established are effective and the theoretical analysis of them is correct.

参考文献/References:

[1] 陆金甫, 关治. 偏微分方程数值解法 [M]. 北京:清华大学出版社, 1987.50-132.
[2] 朱动兰, 钟锡昌, 陈炳木. 初边值问题差分方法及绕流 [M]. 北京:科学出版社, 1980.25-67.
[3] 陈材侃. 计算流体力学 [M]. 重庆:重庆出版社, 1992.1-62.
[4] 曾文平. 对流方程的一类新的恒稳差分格式 [J]. 华侨大学学报(自然科学版), 1997(3):225-230.
[5] 邬华谟. 二次多项式根的Schur-Cohn定理和Miller定理的初等证明 [J]. 数值计算与计算机应用, 1982(3):356-359.
[6] Richtmyer R D, Morton K W. Difference methods for initial-vlue problems.2nd ed [M]. New York:Wiley, 1967.38-107.

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(1):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(1):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(1):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(1):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(1):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(1):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[7]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(1):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[8]郑兴华,曾文平.对流方程的分组显式方法[J].华侨大学学报(自然科学版),1998,19(2):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]
 Zheng Xinghua,Zeng Wenping.Grouping Explicit Method for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),1998,19(1):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]
[9]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[10]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(1):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(01HZR04)
更新日期/Last Update: 2014-03-23