[1]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327-331.[doi:10.3969/j.issn.1000-5013.2002.04.001]
点击复制

抛物型方程的一族双参数高精度恒稳格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第4期
页码:
327-331
栏目:
出版日期:
2002-10-20

文章信息/Info

Title:
A Family of High Accurate and Steady Difference Schemes with Double Parameters for Solving Parabolic Equations
文章编号:
1000-5013(2002)04-0327-05
作者:
曾文平
华侨大学数学系, 泉州 362011
关键词:
抛物型方程 高精度 绝对稳定 差分格式
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2002.04.001
文献标志码:
A
摘要:
对抛物型方程,构造一族含双参数的三层高精度隐式差分格式.在特殊情况下,当参数α=(1)/(2)和β=0时,得到一个两层格式.同时,证明该族格式对任意非负参数都是绝对稳定的,并且其截断误差阶为O((Δt)2+(Δx)6).数值例子表明,该族格式是有效的,且理论分析与实际计算相吻合.

参考文献/References:

[1] СаулbевВК, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 陈传淡, 林群. 解抛物型方程的一族绝对稳定的差分格式 [J]. 厦门大学学报(自然科学版), 1983(3):275-280.
[3] MILLER J J H. On the location of zeros of certain of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971.394-406.
[4] Richtmyer R D, Morton K W. Difference method for initial-value problems 2nd ed [M]. New York:wiley, 1967.11-98.

相似文献/References:

[1]梁汲廷.非一致抛物型方程广义解弱最大值原理的一个证明[J].华侨大学学报(自然科学版),1983,4(1):14.[doi:10.11830/ISSN.1000-5013.1983.01.0014]
[2]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[3]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[4]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[5]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
[6]梁学信.拟线性退缩抛物型方程解的弱最大值原理和渐近性[J].华侨大学学报(自然科学版),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
 Liang Xuexin.Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
[7]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(4):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[8]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(4):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[9]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[10]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(4):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]

备注/Memo

备注/Memo:
国务院侨务办公室自然科学基金
更新日期/Last Update: 2014-03-23