[1]王全义.一类中立型泛函微分方程的概周期解的存在唯一性与稳定性[J].华侨大学学报(自然科学版),2002,23(3):222-228.[doi:10.3969/j.issn.1000-5013.2002.03.002]
 Wang Quanyi.Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):222-228.[doi:10.3969/j.issn.1000-5013.2002.03.002]
点击复制

一类中立型泛函微分方程的概周期解的存在唯一性与稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第3期
页码:
222-228
栏目:
出版日期:
2002-07-20

文章信息/Info

Title:
Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation
文章编号:
1000-5013(2002)03-0222-07
作者:
王全义
华侨大学数学系 泉州362011
Author(s):
Wang Quanyi
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
中立型泛函微分方程 概周期解 存在性 唯一性 稳定性
Keywords:
neutral type of functional differential equation almost periodic solution existence uniqueness stability
分类号:
O175
DOI:
10.3969/j.issn.1000-5013.2002.03.002
文献标志码:
A
摘要:
研究一类具有无穷时滞的中立型泛函微分方程,其概周期解的存在性、唯一性与稳定性等问题 .利用指数型二分性及不动点方法,得到一些关于该方程的概周期解的存在性、唯一性及稳定性的新结果
Abstract:
Regarding the almost periodic solution to a class of neutral type of functional differential equations, a study is made on its existence and uniqueness and stability of which some new results are obtained by applying exponential dichotomy and fixed point method.

参考文献/References:

[1] 黄启昌. 具有无限时滞的泛函微分方程周期解的存在性 [J]. 中国科学A辑, 1984, (10):882-889.
[2] Hino Y, Murakami S. Stability properties of linear Volterra equation [J]. Journal of Differential Equations, 1991(1):121-137.doi:10.1016/0022-0396(91)90115-P.
[3] 王全义. 微分积分方程的概周期解的存在唯一性 [J]. 华侨大学学报(自然科学版), 2001(1):1-5.doi:10.3969/j.issn.1000-5013.2001.01.001.
[4] 杨喜陶, 冯春华. 一类具有无穷时滞的中立型Volterra积分微分方程概周期解的存在唯一性 [J]. 数学学报, 1997(3):395-402.
[5] 王全义. 具无限时滞的积分微分方程的周期解的存在性、唯一性及稳定性 [J]. 应用数学学报, 1998(2):312-318.
[6] 王全义. 概周期解的存在性、唯一性与稳定性 [J]. 数学学报, 1997(1):80-89.
[7] Fink A M. Almost periodic differential equations [M]. New York: Springer-Verlag, 1974.125-127.

相似文献/References:

[1]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[2]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[3]王全义.正概周期解的存在性和唯一性及稳定性[J].华侨大学学报(自然科学版),1999,20(1):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
 Wang Quanyi.Existence and Uniqueness and Stability of Positive Almost Periodic Solution[J].Journal of Huaqiao University(Natural Science),1999,20(3):10.[doi:10.11830/ISSN.1000-5013.1999.01.0010]
[4]王全义.微分积分方程的概周期解的存在唯一性[J].华侨大学学报(自然科学版),2001,22(1):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
 Wang Quanyi.Existence and Uniqueness of Almost Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(3):1.[doi:10.3969/j.issn.1000-5013.2001.01.001]
[5]谢惠琴,王全义.时延细胞神经网络的概周期解问题[J].华侨大学学报(自然科学版),2003,24(1):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
 Xie Huiqin,Wang Quanyi.Problem of Almost Periodic Solution to Cellular Neural Network with Time Delay[J].Journal of Huaqiao University(Natural Science),2003,24(3):16.[doi:10.3969/j.issn.1000-5013.2003.01.003]
[6]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(3):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
[7]张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
 ZHANG Li,WANG Quan-yi.Periodic Solutions for the Second Order Neutral Functional Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2007,28(3):437.[doi:10.3969/j.issn.1000-5013.2007.04.027]
[8]王全义.一类中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2003,24(4):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
 Wang Quanyi.Almost Periodic Solution to a Class of Neutral Type Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2003,24(3):349.[doi:10.3969/j.issn.1000-5013.2003.04.003]
[9]方聪娜,王全义.具时滞的中立型泛函微分方程的概周期解[J].华侨大学学报(自然科学版),2004,25(3):247.[doi:10.3969/j.issn.1000-5013.2004.03.006]
 Fang Congna,Wang Quanyi.The Almost Periodic Solutions to Neutral Type Functional Differential Equation with Time-Delay[J].Journal of Huaqiao University(Natural Science),2004,25(3):247.[doi:10.3969/j.issn.1000-5013.2004.03.006]
[10]王全义.中立型泛函微分方程概周期解的存在唯一性[J].华侨大学学报(自然科学版),2005,26(2):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
 Wang Quanyi.Unique Existence of Almost Periodic Solutions to Neutral Type Functional Differential Equations with Finite Time-Delay[J].Journal of Huaqiao University(Natural Science),2005,26(3):117.[doi:10.3969/j.issn.1000-5013.2005.02.002]
[11]王全义.一类中立型泛函微分方程的概周期解及稳定性[J].华侨大学学报(自然科学版),2006,27(1):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]
 Wang Quanyi.The Almost Periodic Solutions to a Class of Neutral Functional Differential Equations and Their Stability[J].Journal of Huaqiao University(Natural Science),2006,27(3):12.[doi:10.3969/j.issn.1000-5013.2006.01.003]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目
更新日期/Last Update: 2014-03-23