Journal of Huaqiao University (Natural Science)

Jul. 2002

文章编号 1000-5013(2002)03-0222-07

2002年7月

一类中立型泛函微分方程的概周期 解的存在唯一性与稳定性

王全义

(华侨大学数学系,泉州 362011)

摘要 研究一类具有无穷时滞的中立型泛函微分方程,其概周期解的存在性、唯一性与稳定性等问题.利用指数型二分性及不动点方法,得到一些关于该方程的概周期解的存在性、唯一性及稳定性的新结果.

关键词 中立型泛函微分方程,概周期解,存在性,唯一性,稳定性中图分类号 0.175 文献标识码 A

考虑如下的中立型 Volterra 积分微分方程

$$\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{x}(t) - \int_{-\infty}^{t} \boldsymbol{B}(t,s)\boldsymbol{x}(s)\,\mathrm{d}s) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \int_{-\infty}^{t} \boldsymbol{C}(t,s)\boldsymbol{x}(s)\,\mathrm{d}s + \boldsymbol{f}(t), \tag{1}$$

其中t R,x R, 而 A(t), B(t,s), C(t,s) 为 $n \times n$ 连续函数矩阵,f(t) 是 R 到 R 上的连续函数. 文 ① 在 B(t,s) 0 且 n=1 的情况下, 研究式(1) 的周期解的存在性问题. 文 ② 3 元 B(t,s) 0 的情况下, 研究式(1) 的概周期解的存在性问题. 文 ② 3 研究式(1) 的概周期解的存在性问题. 文 ② 3 研究式(1) 的概周期解的存在性、唯一性、稳定性等问题,但它需要的条件为(H_3) 存在常数 m>0, 使得

$$|x(t)|$$
 $m|Dx_t|$ $(\forall t \mathbf{R}),$

其中 $\mathbf{D}\mathbf{x}_t = \mathbf{x}(t) - \begin{bmatrix} \mathbf{B}(t,s)\mathbf{x}(s) \, \mathrm{d}s. \end{bmatrix}$ 此条件既荷刻且又十分难以验证. 因为在一般情况下, 此条件是无法满足的, 除非在 $\mathbf{B}(t,s) = 0$ 的特殊情况下. 例如, 非常简单的算子

$$Dx_{t} = x(t) - \frac{1}{2} e^{-(t-s)}x(s) ds,$$

都无法满足此条件的要求. 事实上, 取 $x(t) = \sin t$, 于是 $Dx = \frac{\sin t}{2} - \frac{\cos t}{2}$. 当 $t = \frac{\pi}{4}$ 时, Dx = 0,

而 $x(t) = \sin \frac{\pi}{4} = \frac{2}{2}$. 因此,对于任意常数 m > 0, |x(t)| m|Dx| 不成立. 本文也研究式 (1) 的概周期解的存在性、唯一性及稳定性等问题. 利用指数型二分性及不动点方法,得到了一些关于方程(1) 的概周期解的存在性、唯一性与稳定性的一些新结果. 所得结果去掉了文 $\{ (1) \}$ 中的难以验证的条件($\{ (1) \}$),并且推广了文 $\{ (1) \}$ 中的有关结果.

收稿日期 2002-04-01 作者简介 王全义(1955-), 男, 教授

1 主要结果

第3期

对于方程(1),假设下述条件:

 (A_1) A(t) 是 t 的概周期函数矩阵. B(t, t+s), C(t, t+s) 关于 t 对 s $D_1(D_1)$ 为 \mathbf{R} 中的任一紧子集), 是一致概周期函数矩阵. f(t) 是 t 的概周期函数向量.

(A₂) 概周期函数 b(t) 的平均值

$$M[b] \triangleq \lim_{t \to s} \frac{1}{t-s} \int_{s}^{t} b(r) ds = -a < 0,$$

其中 $b(t) = \max_{\substack{1 \ j \ n}} \{a_{jj}(t) + \sum_{\substack{i=1,i \ j}}^{n} |a_{jj}(t)| \}.$

 (A_3) 存在着常数 K_1 , 0 $K_1 < 1$, 使得对 $\forall t$ **R**有 $\stackrel{\iota}{=}$ B(t,s) ds K_1 且 $\stackrel{\iota}{=}$ C(t,s) ds 有界.

 (A_4) 对 $\forall \epsilon > 0$,存在着 $L = L(\epsilon) > 0$,使得对 $\forall t$ **R**,都有

$$B(t,s)$$
 ds $< \epsilon$, $C(t,s)$ ds $< \epsilon$.

 (A_5) 存在着正常数 $K > \frac{1+K_1}{1-K_1}$, 使得对 $\forall t \in \mathbf{R}$, 有

$$b(t) + K \int_{-\infty}^{t} G(t,s) ds = 0,$$

 $\{t,t_0\}\}$. 方程 $\{t\}$ 的具有有界连续初始函数 \mathcal{P} $BC(---,t_0]$ 的解,将表示为 $\mathbf{x}(t,t_0,\mathcal{P})$ 或 $\mathbf{x}(t,t_0,\mathcal{P})$

 \mathfrak{P} 或 x(t) (如果不会出现混淆的话).

定义 1 方程(1)的解 $_{\boldsymbol{X}(t,t^0,\mathcal{Q})}$ 称为一致稳定的. 如果对 $\forall \in \mathcal{S}$ 0, $\exists \in \mathcal{S}(\epsilon) > 0$, 使得对 $\forall \mathcal{Q} \quad \boldsymbol{BC}(--,t^0]$, 只要 $\mathcal{Q}-\mathcal{Q}_{\epsilon} < \delta$, 就有

$$x(t,t_0,\mathcal{Q}) - x(t,t_0,\mathcal{Q}) < \epsilon, \quad \forall t \quad t_0.$$

定理 1 对于方程(1),如果条件 $(A_1) \sim (A_5)$ 成立,则方程(1) 存在唯一的,一致稳定的概周期解.

推论 1 在定理 1 的条件下, 如果对 $\forall t, s$ **R**, A(t+T) = A(t), f(t+T) = f(t), C(t+T, s+T) = C(t,s), B(t+T,s+T) = B(t,s), 这里 T > 0 为常数. 那么方程(1) 存在着唯一的、一致稳定的 T -周期解.

注 1 本文的这些条件是十分容易验证的,而且满足条件 (A_4) 的算子 Dx_t 未必能满足文 $\{ \}$ 中的条件 (H_3) (见前面所述的算子 Dx_t). 此外,本文对 A(t) 的限制条件也明显比文 $\{ \}$ 中的条件弱.

注 2 若在推论 1 中取 $\mathbf{B}(t,s) = 0$, 则推论 1 推广了定理 $5^{(1)}$.

2 一些引理

©本节先给出口些有用的引理 Jo考虑如下微分方程 lishing House. All rights reserved. http://w

$$\frac{\mathrm{d}x}{\mathrm{d}t} = A(t)x,\tag{2}$$

其中t R,x Rⁿ, $A(t) = (aij(t))_{n \times n}$ 是 $n \times n$ 连续函数矩阵.

下列引理 1 是引理 3.1⁶¹, 引理 3 是引理 2.5⁶¹.

引理 $\mathbf{1}^{61}$ 设 X(t) 是方程 (2) 的一个基本解方阵,则有

$$X(t)X^{-1}(s) \qquad \exp(b(r)dr) \qquad (t \quad s), \tag{3}$$

其中 $b(t) = \max_{\substack{i,j \ n}} \{a_{ij}(t) + \sum_{\substack{i=1, i \ i}}^{n} |a_{ij}(t)| \}.$

引理 2 设 $n \times n$ 连续函数矩阵 C(t,s) 满足条件 $(A_1), (A_3)(A_4)$ 且 $f_1(t)$ 是 n 维概周期函数、则

$$\mathbf{f}_{2}(t) = {\mathbf{c}(t,s)\mathbf{f}_{1}(s) \,\mathrm{d}s}, \tag{4}$$

也是概周期函数.

证明 首先证明 $f_2(t)$ 有定义.事实上,因为 $f_1(t)$ 是概周期函数,故存在正常数 M_1 ,使得 $f_1(t)$ M_1 ($\forall t$ **R**). (5)

又由条件 (A_3) 知存在正常数 M_2 , 使得

$$C(t,s)$$
 ds M_2 $(\forall t \mathbf{R})$. (6)

从而

即 $f_2(t)$ 有定义.由 $C(t,s),f_1(t)$ 的连续性及条件 (A_4) 可知 $f_2(t)$ 也是连续函数.

下面证明 $f_2(t)$ 是概周期函数. 对 $\forall \epsilon > 0$, 由条件(A₄) 知, 存在着 $L = L(\epsilon) > 0$, 使得

$$C(t,s) \quad ds < \frac{\epsilon}{6M^{\perp}} \qquad (t \quad \mathbf{R}), \tag{8}$$

即有

$$C(t, t + u) \quad du < \frac{\epsilon}{6M} \qquad (t \quad \mathbf{R}). \tag{9}$$

又由条件(A₁) 可知, 对任给的实数列{ t_n }, 存在子序列{ t_n } \subset { t_n }, 使得{ $C(t+t_n, t+t_n+s)$ } 在 **R**×[-L, 0]上一致收敛且{ $f_1(t+t_n)$ } 在 **R** 上一致收敛. 因此, 对上述的 ϵ , 存在着自然数 $N=N(\epsilon)$ 充分大. 它使得当 m,n-N 时, 对 $\forall t-\mathbf{R}$, $\forall s-[-L,0]$, 有

$$C(t + t_m, t + t_m + s) - C(t + t_n, t + t_n + s) < \frac{\epsilon}{6M \cdot L},$$
 (10)

$$f_1(t + t_m) - f_1(t + t_n) < \frac{\epsilon}{6M_2}.$$
 (11)

于是由式(6) ~式(11) 得, 当 $m, n \in \mathbb{N}$ 时, 对 $\forall t \in \mathbb{R}$, 有

$$f_{2}(t + t_{m}) - f_{2}(t + t_{n}) = C(t + t_{m}, s) \cdot f_{1}(s) ds + \frac{t + t_{m}}{t + t_{m}} C(t + t_{m}, s) f_{1}(s) ds - \frac{t + t_{n}}{t + t_{n}} C(t + t_{n}, s) f_{1}(s) ds + \frac{t + t_{n}}{t + t_{n}} C(t + t_{n}, s) f_{2}(s) ds + \frac{t + t_{n}}{t + t_{n}} C(t + t_{n}, s) f_{2}(s) ds + \frac{t + t_{n}}{t + t_{n}} C(t + t_{n}, s) f_{3}(s) ds + \frac{t + t_{n}}{t + t_{n}} C(t +$$

$$M_{1} \bullet \frac{\epsilon}{6M_{1}} + \int_{-L}^{0} \mathbf{C}(t+t_{m},t+t_{m}+u) \mathbf{f}_{1}(t+t_{m}+u) du - \int_{-L}^{0} \mathbf{C}(t+t_{n},t+t_{n}+u) \mathbf{f}_{1}(t+t_{n}+u) du + M_{1} \bullet \frac{\epsilon}{6M_{1}}$$

$$\frac{\epsilon}{3} + \int_{-L}^{0} \mathbf{C}(t+t_{m},t+t_{m}+u) - \mathbf{C}(t+t_{n},t+t_{n}+u) \cdot \mathbf{f}_{1}(t+t_{m}+u) du + \int_{-L}^{0} \mathbf{C}(t+t_{n},t+t_{n}+u) \cdot \mathbf{f}_{1}(t+t_{m}+u) - \mathbf{f}_{1}(t+t+u) du$$

$$\frac{\epsilon}{3} + \frac{\epsilon}{6M_{1}L} \bullet M_{1}L + \frac{\epsilon}{6M_{2}} \bullet M_{2} < \epsilon.$$

因此, $\{f_2(t+t_n)\}$ 在 R 上一致收敛, 即 $f_2(t)$ 是 t 的概周期函数. 引理 2 证毕.

引理 3^{61} 设 b(t) 满足条件(A_2),则存在正常数 α , β 使得

$$\exp\left(-\frac{t}{s}b(r)\,\mathrm{d}r\right) \qquad \beta \exp\left(-\alpha(t-s)\right) \qquad (t-s). \tag{12}$$

考虑如下方程

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t)\mathbf{x} + \mathbf{g}(t), \tag{13}$$

其中t R,x Rⁿ,且 A(t)为 $n \times n$ 概周期函数矩阵,g(t)为 n 维概周期函数向量.

引理 4 设 A(t) 满足条件 (A^2) ,则方程(13) 存在唯一的概周期解 x(t). 它可表示为

$$\mathbf{x}(t) = {\overset{t}{\mathbf{X}}(t) \mathbf{X}^{-1}(s) \mathbf{g}(s) ds}, \tag{14}$$

其中X(t) 为方程(2)的一个基本解方阵.

证明 因为A(t)满足条件 (A_2) ,所以由引理 1, 3 可知, 方程(2) 具有指数型二分性. 又由定理 7. $7^{(1)}$,即知引理 4 的结论成立,引理 4 证毕.

3 定理的证明

()定理1的证明. 记 $\mathbf{B}^1 = \{ \mathbf{u}(t) \mid \mathbf{u} \in \mathbf{R} \in \mathbf{R}^n \}$ 为概周期函数 $\}$,则 \mathbf{B}^1 在范数 $\mathbf{u} = \sup \{ \mathbf{u}(t) = t \in \mathbf{R} \}$ 下是一个Banach 空间. 又记 $\mathbf{G}(t,s) = \mathbf{A}(t) \mathbf{B}(t,s) + \mathbf{C}(t,s)$. 于是, 由定

理的条件可知 G(t,s) 具有 C(t,s) 的性质. 对 $\forall u$ B_1 , 由引理 2 可知 B(t,s)u(s) ds 及

G(t,s) • u(s) ds 都是概周期函数. 从而由引理 4 可知 X(t) • $X^{-1}(s)$ G(t,s)

$$s$$
) $u(s)$ ds] dr 也是概周期函数. 此处 $X(t)$ 是方程(2)的一个基本解方阵. 因此

 $I_{\mu}(s)$ $I_{\mu}(s)$

$$\boldsymbol{x}_{u}(t) \triangleq \left[\boldsymbol{B}(t,s)\boldsymbol{u}(s) ds + \left[\boldsymbol{X}(t)\boldsymbol{X}^{-1}(r) \right] \right] \boldsymbol{G}(r,s)\boldsymbol{u}(s) ds + \boldsymbol{f}(r) dr, \qquad (15)$$

也是概周期函数.

现在,作映射F B B 为

$$F u(t) = x_u(t) \qquad (\forall u \quad B_1). \tag{16}$$

下面证明算子 F 在 B^1 中是压缩的. 事实上, 对 $\forall u^1, u^2 = B^1$, 由式(15), (16) 和定理的条件及引理 2, 可得

$$\mathbf{X}(t) \bullet \mathbf{X}^{-1}(r) \bullet \begin{bmatrix} \mathbf{r} \\ \mathbf{G}(r,s) \bullet \mathbf{u}_{1}(s) - \mathbf{u}_{2}(s) & \mathrm{d}s \end{bmatrix} dr$$

$$\mathbf{u}_{1} - \mathbf{u}_{2} \stackrel{t}{=} \mathbf{B}(t,s) \quad \mathrm{d}s + \frac{\mathbf{r}}{\mathbf{r}} \exp(\frac{t}{r}b(\tau)d\tau) \begin{bmatrix} \mathbf{u}_{1} - \mathbf{u}_{2} \bullet \mathbf{v} \\ \mathbf{G}(r,s) & \mathrm{d}s \end{bmatrix} dr$$

$$K_{1} \quad \mathbf{u}_{1} - \mathbf{u}_{2} + \mathbf{u}_{1} - \mathbf{u}_{2} \stackrel{t}{=} \exp(\frac{t}{r}b(\tau)d\tau) \bullet (-\frac{b(r)}{K}) dr = K_{1} \quad \mathbf{u}_{1} - \mathbf{u}_{2} + \frac{1}{K} \quad \mathbf{u}_{1} - \mathbf{u}_{2} = (K_{1} + \frac{1}{K}) \quad \mathbf{u}_{1} - \mathbf{u}_{2} \quad . \tag{17}$$

即有 $Fu - Fu^2$ $(K_1 + \frac{1}{K})$ $u^1 - u^2$. 因为 $K > \frac{1 + K_1}{1 - K_1}$, 故 $K_1 + \frac{1}{K} < 1$. 由此, 可知算子 F 在 B_1 中是压缩的. 从而 F 在 B_1 中存在唯一的不动点, 即存在唯一的一点 x B_1 使得

 $\mathbf{x}(t) = \mathbf{B}(t,s)\mathbf{x}(s)\,\mathrm{d}s + \mathbf{X}(t)\mathbf{X}^{-1}(r)\left[\mathbf{G}(r,s)\mathbf{x}(s)\,\mathrm{d}s + \mathbf{f}(r)\right]\,\mathrm{d}r. \tag{18}$

移项得

$$\boldsymbol{x}(t) - \int_{-\tau}^{t} \boldsymbol{B}(t,s) \boldsymbol{x}(s) ds = \int_{-\tau}^{t} \boldsymbol{X}(t) \boldsymbol{X}^{-1}(r) \left[\int_{-\tau}^{r} \boldsymbol{G}(r,s) \boldsymbol{x}(s) ds + \boldsymbol{f}(r) \right] dr.$$
 (19)

由上式的右边可知 $(x(t) - \bigcup_{t=0}^{t=0} B(t,s)x(s) ds)$ 是连续可微的, 并且直接从式(19) 的两边对 t 求导即知 x(t) 满足方程(1), 即 x(t) 是方程(1) 的唯一概周期解.

最后证明方程(1)的任-解都是一致稳定的. 先把方程(1)写成如下形式:

$$\frac{\mathrm{d}}{\mathrm{d}t} D \mathbf{x}_t = \mathbf{A}(t) D \mathbf{x}_t + \int_{-\infty}^{t} \mathbf{G}(t, s) \mathbf{x}(s) \, \mathrm{d}s + \mathbf{f}(t), \qquad (20)$$

其中 $\mathbf{D}\mathbf{x}_t = \mathbf{x}(t) - \mathbf{B}(t,s)\mathbf{x}(s)\,\mathrm{d}s, \mathbf{G}(t,s)$ 如前所述。由常数变易法可知,对 $\forall t_0 = 0, \, \mathcal{Q}, \, \mathcal{Q}$

$$\mathbf{D}\mathbf{y}_{t} = \mathbf{X}(t)\mathbf{X}^{-1}(t_{0})\mathbf{D}\mathbf{y}_{t_{0}} + \sum_{t_{0}}^{t} \mathbf{X}(t)\mathbf{X}^{-1}(r) \begin{bmatrix} r & \mathbf{G}(r,s)\mathbf{y}(s) \, ds + \mathbf{f}(r) \end{bmatrix} dr \quad (t = t_{0}), \quad (22)$$

其中
$$X(t)$$
为方程 (2) 的一个基本解方阵.由式 $(21),(22)$ 得

$$\mathbf{x}(t,t_0,\mathcal{P}) = \mathbf{X}(t)\mathbf{X}^{-1}(t_0)\mathbf{D}\mathbf{x}_{t_0} + \int_{-\mathbf{R}}^{t} \mathbf{B}(t,s)\mathbf{x}(s) \,\mathrm{d}s + \int_{t_0}^{t} \mathbf{X}(t)\mathbf{X}^{-1}(r) \,\bullet$$

$$\left[\int_{-\mathbf{R}}^{r} \mathbf{G}(r,s)\mathbf{x}(s) \,\mathrm{d}s + \mathbf{f}(r)\right] \,\mathrm{d}r \qquad (t = t_0), \tag{23}$$

$$\mathbf{y}(t,t_0,\mathcal{P}) = \mathbf{X}(t)\mathbf{X}^{-1}(t_0)\mathbf{D}\mathbf{y}_{t_0} + \int_{-\mathbf{R}}^{t} \mathbf{B}(t,s)\mathbf{y}(s) \,\mathrm{d}s + \int_{t_0}^{t} \mathbf{X}(t)\mathbf{X}^{-1}(r) \,\bullet$$

$$\left[\int_{-\mathbf{R}}^{r} \mathbf{G}(r,s)\mathbf{y}(s) \,\mathrm{d}s + \mathbf{f}(r)\right] \,\mathrm{d}r \qquad (t = t_0). \tag{24}$$

于是对 $\forall \triangleright 0$, 取 $\delta = \frac{\epsilon}{K}$ (这里 K 由条件(A_5)给出), 则当 $\varphi - \varphi < \delta$ 时, 必有

否则的话,必存在 t1> t0,使得

$$x(t, t_0, \mathcal{Q}) - y(t, t_0, \mathcal{Q}) < \epsilon \quad (t_0 < t < t_1),$$
 (26)

而

$$\mathbf{x}(t_1,t_0,\mathbf{\mathcal{Q}}) - \mathbf{y}(t_1,t_0,\mathbf{\mathcal{Q}}) = \boldsymbol{\epsilon}. \tag{27}$$

于是由式(23),(24),(26),(27)可得

$$\epsilon = \mathbf{x}(t_{1}, t_{0}, \mathcal{P}) - \mathbf{y}(t_{1}, t_{0}, \mathcal{P})$$

$$\mathbf{X}(t_{1})\mathbf{X}^{-1}(t_{0}) \cdot \mathbf{D}\mathbf{x}_{t_{0}} - \mathbf{D}\mathbf{y}_{t_{0}} + \frac{t_{1}}{-} \mathbf{B}(t_{1}, s) \cdot \mathbf{x}(s) - \mathbf{y}(s) ds + \frac{t_{1}}{t_{0}} \mathbf{X}(t_{1})\mathbf{X}^{-1}(r)\begin{bmatrix} \mathbf{x}(t_{0}) - \mathbf{y}(t_{0}) + \frac{t_{0}}{-} \mathbf{B}(t_{0}, s) \cdot \mathbf{y}(s) ds \end{bmatrix} dr$$

$$\exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right)\begin{bmatrix} \mathbf{x}(t_{0}) - \mathbf{y}(t_{0}) + \frac{t_{0}}{-} \mathbf{B}(t_{0}, s) \cdot \mathbf{P}(s) - \mathbf{P}(s) - \mathbf{P}(s) ds \end{bmatrix} + \epsilon K_{1} + \frac{t_{1}}{t_{0}}\exp\left(\frac{t_{1}}{r}b(\tau)d\tau\right) \cdot \begin{bmatrix} \epsilon - \mathbf{G}(r, s) ds \end{bmatrix} dr$$

$$\exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right)(\delta + K_{1}\delta) + K_{1}\epsilon + \epsilon \frac{t_{1}}{t_{0}}\exp\left(\frac{t_{1}}{r}b(\tau)d\tau\right) \cdot \left(-\frac{b(r)}{K}\right) dr = \exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right) \cdot \frac{\epsilon}{K} + K_{1}\left(\frac{\epsilon}{K} + \epsilon\right) + \frac{\epsilon}{K}\left[1 - \exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right)\right] = \frac{\epsilon}{K} + \frac{\epsilon}{K}\left[1 - \exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right)\right] = \frac{\epsilon}{K} + \frac{\epsilon}{K}\left[1 - \exp\left(\frac{t_{1}}{t_{0}}b(r)dr\right)\right]$$

() 推论 1 的证明. 因为 A(t) 是 t 的 T-周期函数, 故若 X(t) 是方程(2) 的一个基本解方阵, 则 X(t+T) 也是方程(2) 的一个基本解方阵. 因此存在着 n 阶非奇异常数方阵 D_1 , 使得 $X(t+T) = X(t)D_1$, 从而

 $K_1\epsilon + \frac{\epsilon K_1}{K} + \frac{\epsilon}{K} = \frac{(1+K_1)\epsilon}{K} + K_1\epsilon < (1-K_1)\epsilon + K_1\epsilon = \epsilon.$

$$X(t+T)X^{-1}(r+T) = X(t)X^{-1}(r).$$
 (28)

由推论的条件知, 当 $\boldsymbol{u}(t)$ 是 n 维的连续 T -周期函数时, $\boldsymbol{b}(t,s)\boldsymbol{u}(s)$ ds 和 $\boldsymbol{b}(t,s)\boldsymbol{u}(s)$ ds 也都是连续的 T -周期函数 . 利用式(28), 容易验证

$$\boldsymbol{x}_{u}(t) = \boldsymbol{B}(t,s)\boldsymbol{u}(s) ds + \boldsymbol{X}(t)\boldsymbol{X}^{-1}(r) [\boldsymbol{b}^{t} \boldsymbol{G}(r,s)\boldsymbol{u}(s) ds + \boldsymbol{f}(r)] dr$$

也是连续的 T-周期函数. 因此,只须把定理 1 证明中的空间 B^1 换成空间 $B^2 = \{u(t) \mid u \in \mathbb{R}^n \}$ 为连续的 T-周期函数},即知此时推论 1 成立. 推论 1 证毕.

4 实例

考虑如下方程

$$\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{x}(t) - \frac{1}{4} \int_{-\infty}^{t} \mathrm{e}^{s-t} \boldsymbol{x}(s) \, \mathrm{d}s) = - \left| \sin t \right| \boldsymbol{x}(t) +$$

© 1994-2010 China Academie Josintal Exectrolic Pathibaing Hin2te. All rights reserved. (129)://w

这里
$$B(t,s) = \frac{1}{4}e^{s^{-t}}$$
, $A(t) = -|\sin t|$, $C(t,s) = \frac{1}{8}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$, $f(t) = \sin 2t$. 从而
$$G(t,s) = A(t)B(t,s) + C(t,s) = \frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{8}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{8}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}} \cdot \sin t \cdot \cos \frac{1}{2}t$$
,
$$\frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s^{-t}}|\sin t| + \frac{1}{4}e^{s$$

取
$$K := \frac{1}{4}, K = \frac{8}{3} > \frac{1+K_1}{1-K_1} = \frac{1+\frac{1}{4}}{1-\frac{1}{4}} = \frac{5}{3}, b(t) = -|\sin t|$$
, 于是有 $b(t) + K^{-t} |G(t,s)| ds = 0.$

因此, 定理 1 的所有条件都能满足. 从而, 由定理 1 可知, 方程(29) 存在唯一的、一致稳定的概周期解.

注 3 显然, 文 (4)中的主要结果定理 3.1, 它是无法判断方程(29)的概周期解的存在性、唯一性及稳定性.

参 考 文 献

- 1 黄启昌. 具有无限时滞的泛函微分方程周期解的存在性[J]. 中国科学(A 辑), 1984, 10: 882~889
- 2 Hino Y, Murakami S. Stability properties of linear Volterra equation [J]. J. of Diff. Eqs., 1991, 89(1): 121~137
- 3 王全义. 微分积分方程的概周期解的存在唯一性[J]. 华侨大学学报(自然科学版),2001,22(1):1~5
- 4 杨喜陶, 冯春华. 一类具有无穷时滞的中立型 Volterra 积分微分方程概周期解的存在唯一性[J]. 数学学报, 1997, 40(3): 395~402
- 5 王全义. 具无限时滞的积分微分方程的周期解的存在性、唯一性及稳定性[J]. 应用数学学报, 1998, 21 (2): 312~318
- 6 王全义. 概周期解的存在性、唯一性与稳定性[J]. 数学学报,1997,40(1):80~89
- 7 Fink A.M. Almost periodic differential equations M. New York: Springer-Verlag, 1974. 125~127

Existence and Uniqueness and Stability of Almost Periodic Solution to a Class of Neutral Type of Functional Differential Equation

Wang Quanyi

(Dept. of Math., Huaqiao Univ., 362011, Quanzhou)

Abstract Regarding the almost periodic solution to a class of neutral type of functional differential equations, a study is made on its existence and uniqueness and stability of which some new results are obtained by applying exponential dichotomy and fixed point method.

Keywords neutral type of functional differential equation, almost periodic solution, existence, uniqueness, stability

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://w