[1]黄浪扬.四阶杆振动方程的tanh(x)辛格式[J].华侨大学学报(自然科学版),2002,23(3):217-221.[doi:10.3969/j.issn.1000-5013.2002.03.001]
 Huang Langyang.Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)[J].Journal of Huaqiao University(Natural Science),2002,23(3):217-221.[doi:10.3969/j.issn.1000-5013.2002.03.001]
点击复制

四阶杆振动方程的tanh(x)辛格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第3期
页码:
217-221
栏目:
出版日期:
2002-07-20

文章信息/Info

Title:
Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)
文章编号:
1000-5013(2002)03-0217-05
作者:
黄浪扬
华侨大学数学系 泉州362011
Author(s):
Huang Langyang
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
四阶杆振动方程 Hamilton方程组 辛格式
Keywords:
four order rod vibration equation Hamiltonian systems symplectic scheme
分类号:
O241.8
DOI:
10.3969/j.issn.1000-5013.2002.03.001
文献标志码:
A
摘要:
考虑四阶杆振动方程的哈密顿方程组 .利用 Hyperbolic函数 tanh(x),构造具周期边界条件的四阶杆振动方程的具任意阶精度的有限维空间截断的辛离散,最后给出数值例子 .数值结果表明,单辛格式具有良好的长时间数值行为
Abstract:
Hamiltonian schemes of four order rod vibration equation are considered and hyperbolic function tanh( x ) is applied. In relation to four order rod vibration equation with periodic boundary condition, symplectic discretion with accuracy of arbitrary order and finite dimensional spatial truncation is constructed. Numerical examples are given finally, the results of which show that the symplectic schemes have excellent long time numerical behavior.

参考文献/References:

[1] 吴大猷. 电磁学:理论物理 [M]. 北京:科学出版社, 1983.1-40.
[2] Feng Kang, Qin Mengzhao. The symplectic methods for the computation of Hamiltonian equations [A]. Berlin:Springer, 1987.1-37.
[3] Feng K. On difference schemes and symplectic geometry [A]. 北京:科学出版社, 1985.42-58.
[4] 冯康, 秦孟兆. Hamilton动力体系的Hamilton算法 [J]. 自然科学进展, 1991(2):102-112.
[5] Li C W, Qin M Z. A symplectic diffirence scheme for the infinite dimensional Hamiltonian systems [J]. Journal of Computational Mathematics, 1988(2):164-174.
[6] 秦孟兆. 波动方程两种哈密顿型蛙跳格式 [J]. 计算数学, 1988(3):272-281.
[7] 秦孟兆. 辛几何及计算哈密顿力学 [J]. 力学与实践, 1990(6):1-20.
[8] QIN M Z, Zhu W J. Construction of symplectic schemes for wave equations via hyperbolic functions sinh(x), cosh(x), tanh(x) [J]. Computers & Mathematics with Applications, 1993(8):1-11.
[9] 黄浪扬, 曾文平. 解四阶杆振动方程的辛算法 [J]. 漳州师范学院学报(自然科学版), 2001(2):28-31.doi:10.3969/j.issn.1008-7826.2001.02.006.
[10] Miller J H. On the location of zeros of certain class of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971.397-409.doi:10.1093/imamat/8.3.397.

相似文献/References:

[1]曾文平.四阶杆振动方程的含参数四层显式格式[J].华侨大学学报(自然科学版),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
 Zeng Wenping.Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration[J].Journal of Huaqiao University(Natural Science),2002,23(3):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
[2]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
[3]黄浪扬.四阶杆振动方程的sinh(x)蛙跳辛格式[J].华侨大学学报(自然科学版),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
 Huang Langyang.Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
[4]黄浪扬.四阶杆振动方程的cosh(x)显式辛格式[J].华侨大学学报(自然科学版),2003,24(3):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]
 Huang Langyang.Explicit Symplectic Scheme of Four-Order Rod Vibration Equation via Function cosh(x)[J].Journal of Huaqiao University(Natural Science),2003,24(3):239.[doi:10.3969/j.issn.1000-5013.2003.03.003]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目
更新日期/Last Update: 2014-03-23