[1]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111-115.[doi:10.3969/j.issn.1000-5013.2002.02.001]
 Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(2):111-115.[doi:10.3969/j.issn.1000-5013.2002.02.001]
点击复制

线性积分微分方程的周期解的存在唯一性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第2期
页码:
111-115
栏目:
出版日期:
2002-04-20

文章信息/Info

Title:
Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations
文章编号:
1000-5013(2002)02-0111-05
作者:
王全义
华侨大学数学系 泉州362011
Author(s):
Wang Quanyi
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
积分微分方程 周期解 唯一性 稳定性
Keywords:
integrodifferential equation periodic solution uniqueness stability
分类号:
O175.6
DOI:
10.3969/j.issn.1000-5013.2002.02.001
文献标志码:
A
摘要:
给出一类具有时滞的线性积分方程和线性积分微分方程,存在唯一的周期解的充分必要条件 .后举两个例子说明,Burton提出的有关这两类线性方程的解的渐近稳定性的公开问题中的那些条件,不仅不能保证其解的渐近稳定性,而且也不能保证其解的稳定性
Abstract:
Concerning the solutions to a class of linear integral equations with time lag and a class of linear integrodifferential equations, the author gives necessary and sufficient conditions for the existence and the uniqueness of periodic solutions to them, and exemplifies that those conditions advanced by Burton in open problem for the asymptotic stability of their solutions not only unable to pledge the asymptotic stability of their solutions but also unable to pledge the stability of their solutions.

参考文献/References:

[1] BURTON T A. Linear integral equations and periodicity [J]. Annals of Differential Equations, 1997(4):313-326.
[2] 王全义. 线性微分积分方程的周期解 [J]. 华侨大学学报(自然科学版), 2001(2):117-121.doi:10.3969/j.issn.1000-5013.2001.02.002.
[3] 郑祖庥. 泛函微分方程理论 [M]. 合肥:安徽教育出版社, 1994.229-298.

相似文献/References:

[1]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[2]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[3]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[4]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[5]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(2):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[6]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[7]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[8]王全义.一类Volterra型积分微分方程的稳定性[J].华侨大学学报(自然科学版),1998,19(1):1.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
 Wang Quanyi.Stability of a Class of Volterra Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1998,19(2):1.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
[9]王全义.线性微分积分方程的周期解[J].华侨大学学报(自然科学版),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
 Wang Quanyi.Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
[10]方聪娜,王全义.一类具有时滞的微分系统的周期解[J].华侨大学学报(自然科学版),2003,24(2):119.[doi:10.3969/j.issn.1000-5013.2003.02.002]
 with Time,Delay Fang,Congna Wang,et al.Periodic Solution to a Class of Differential Systems[J].Journal of Huaqiao University(Natural Science),2003,24(2):119.[doi:10.3969/j.issn.1000-5013.2003.02.002]
[11]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目
更新日期/Last Update: 2014-03-23