[1]彭兴黔.两端弹性铰支约束下压杆稳定的优化设计[J].华侨大学学报(自然科学版),2002,23(1):45-49.[doi:10.3969/j.issn.1000-5013.2002.01.011]
 Peng Xinqian.Optimal Design of the Stability of Compression Bar under the Constraint of Elastically Hinged Support at Both Ends[J].Journal of Huaqiao University(Natural Science),2002,23(1):45-49.[doi:10.3969/j.issn.1000-5013.2002.01.011]
点击复制

两端弹性铰支约束下压杆稳定的优化设计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第1期
页码:
45-49
栏目:
出版日期:
2002-01-20

文章信息/Info

Title:
Optimal Design of the Stability of Compression Bar under the Constraint of Elastically Hinged Support at Both Ends
文章编号:
1000-5013(2002)01-0045-05
作者:
彭兴黔
华侨大学土木工程系 泉州362011
Author(s):
Peng Xinqian
Dept. of Civil Eng., Huaqiao Univ., 362011, Quanzhou
关键词:
压杆 边界条件 优化设计 临界荷载
Keywords:
compression bar boundary condition optimal design critical load
分类号:
TU323
DOI:
10.3969/j.issn.1000-5013.2002.01.011
文献标志码:
A
摘要:
采用泛函极值分析的拉格朗日乘子法,对压杆在两端弹性铰支约束下进行截面优化的稳定分析 .求得压杆在任意弹性铰支约束下,截面优化分布规律和挠曲函数的通用表达式,并给出计算临界荷载的统一公式
Abstract:
By adopting Lagrange’s multipliers method for functional analysis of extreme value, the author makes an optimal stability analysis of a section of compression bar under the constraint of elastically hinged support at both ends. A common expression is obtained for expressing the rule of optimal distribution on the section and the function of flexure of the compression bar under the constraint of arbitrarily elastically hinged support. And an integrated formula is given for calculating critical load.

相似文献/References:

[1]梁学信,梁汲廷,吴在德,等.非一致二阶线性抛物型方程广义解的弱最大值原理[J].华侨大学学报(自然科学版),1982,3(2):9.[doi:10.11830/ISSN.1000-5013.1982.02.0009]
[2]王全凤.变刚度框架-剪力墙结构抗地震荷载剪力墙数量的优化分析[J].华侨大学学报(自然科学版),1982,3(2):43.[doi:10.11830/ISSN.1000-5013.1982.02.0043]
[3]朱元祥.弹性板补充理论[J].华侨大学学报(自然科学版),1983,4(1):40.[doi:10.11830/ISSN.1000-5013.1983.01.0040]
[4]王由义.离散化在电磁场研究中的应用[J].华侨大学学报(自然科学版),1984,5(2):79.[doi:10.11830/ISSN.1000-5013.1984.02.0079]
[5]杨翔翔.准线性化技术在求解热传导问题中的应用[J].华侨大学学报(自然科学版),1987,8(2):200.[doi:10.11830/ISSN.1000-5013.1987.02.0200]
 Yang Xiangxiang.Application of Quasilinearization Technique for Solving a Heat Conduction Problem[J].Journal of Huaqiao University(Natural Science),1987,8(1):200.[doi:10.11830/ISSN.1000-5013.1987.02.0200]
[6]林赞生,麦淑良.竖向荷载下框支剪力墙的内力位移分析[J].华侨大学学报(自然科学版),1987,8(4):413.[doi:10.11830/ISSN.1000-5013.1987.04.0413]
 Lin Zansheng,Mai Shuliang.Analysis of Internal Forces and Displacements of Shear Wall Supported by Frame and Subjected to vertical Load[J].Journal of Huaqiao University(Natural Science),1987,8(1):413.[doi:10.11830/ISSN.1000-5013.1987.04.0413]
[7]杨翔翔,翁荣周.二维肋片传热的有限元分析[J].华侨大学学报(自然科学版),1988,9(4):509.[doi:10.11830/ISSN.1000-5013.1988.04.0509]
 Yang Xiangxiang,Weng Rongzhou.Two-dimensional Heat Transfer in a Fin as Observed by Finite Element Analysis[J].Journal of Huaqiao University(Natural Science),1988,9(1):509.[doi:10.11830/ISSN.1000-5013.1988.04.0509]
[8]何宏舟,杨翔翔.梯形肋片端部第三类边界条件的换热研究[J].华侨大学学报(自然科学版),1993,14(3):370.[doi:10.11830/ISSN.1000-5013.1993.03.0370]
 He Hongzhou,Yang Xiangxiang.A Study on the Heat Transfer at the Tip of a Trapezoidal Fin under Boundary Condition of the Third Kind[J].Journal of Huaqiao University(Natural Science),1993,14(1):370.[doi:10.11830/ISSN.1000-5013.1993.03.0370]
[9]欧达毅.遗传算法的平板建筑结构瞬态隔振性能边界条件优化方法[J].华侨大学学报(自然科学版),2020,41(4):474.[doi:10.11830/ISSN.1000-5013.202002001]
 OU Dayi.Boundary Condition Optimization Method for Transient Vibration Isolation of Plate-Like Building Structures Using Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2020,41(1):474.[doi:10.11830/ISSN.1000-5013.202002001]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目
更新日期/Last Update: 2014-03-23