[1]陈强顺,王建成.应用电荷运动规律确定电磁场运动规律[J].华侨大学学报(自然科学版),2001,22(3):321-325.[doi:10.3969/j.issn.1000-5013.2001.03.022]
 Chen Qiangshun,Wang Jiancheng.Characteristics of Motion of Electromagnetic Field Can Be Determined by Applying Characteristics of Motion of Electric Charge[J].Journal of Huaqiao University(Natural Science),2001,22(3):321-325.[doi:10.3969/j.issn.1000-5013.2001.03.022]
点击复制

应用电荷运动规律确定电磁场运动规律()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第22卷
期数:
2001年第3期
页码:
321-325
栏目:
出版日期:
2001-07-20

文章信息/Info

Title:
Characteristics of Motion of Electromagnetic Field Can Be Determined by Applying Characteristics of Motion of Electric Charge
文章编号:
1000-5013(2001)03-0321-05
作者:
陈强顺王建成
同济大学物理系, 上海200092; 华侨大学信息科学与工程学院, 泉州362011
Author(s):
Chen Qiangshun1 Wang Jiancheng2
1.Dept. of Phys., Tongji Univ., 200092, Shanghai; 2.College of Info. Sci. & Eng., Huaqiao Univ., 362011, Quanzhou
关键词:
微分形式 外微分 缩并(内积) Poincare定理
Keywords:
differential form exterior differentiation contraction (interior product) poincare theorem
分类号:
O442; O411.1
DOI:
10.3969/j.issn.1000-5013.2001.03.022
摘要:
运用向量场与微分形式的缩并 (内积 )和外微分运算,并依照 Poincare定理论证电荷的运动规律可确定电磁场的运动规律
Abstract:
Characteristics of motion of electromagnetic field can be determined by characteristics of motion of electric charge. In other word, characteristics of motion of electric charge can determine characteristics of motion of electromagnetic field. The above conclusion is demonstrated in the light of poincare theorem, it is demonstrated by using contraction (interior product) of vector field and differential form as well as operation of exterior differentiation.

参考文献/References:

[1] 陈强顺. 分析力学导论 [M]. 上海:同济大学出版社, 1997.72-76.
[2] 陈强顺. 物理规律的本原问题 [J]. 数学、力学、物理学、高新技术研究进展, 1998.197-198.
[3] 陈强顺, 冯承天. 电荷守恒定律可确定麦克斯韦方程组的数学形式 [J]. 同济大学学报(自然科学版), 1989(7):395-400.
[4] Chen Qiangshun. The mathematical connection from the conservation law of electric charge to Mexwells equations [J]. Journal of Natural Science of Heilongjiang University, 1993, (10):33-38.
[5] VON WESTENHOLZ C. Differential forms in mathematical physics [M]. Amsterdam:North-Holl, 1981.168-174.
[6] Schutz B F. Geometrical methods of mathemetical physics [M]. London:Cambridge University Press, 1980.113-160.
[7] Curtis W D, Miller F R. Differential manifolds and theoretical physiscs [M]. New York:Acadmic Press, 1985.141-190.
[8] Burke W L. Applied differential geometry [M]. London: Cambridge Univ.Press, 1985.153-154.
[9] EDELEN D G B. Applied exterior calculus [M]. New York:John Wiley & Sons, 1985.361-369.
[10] Corwin L F, Szczarba R H. Multivariable calculus [M]. New York:Marcel Dekker, 1982.381-401.
[11] CHOQUET-BRUHAT Y, Dewitt-Morette C. Analysis manifolds and physics [M]. Amsterdam:North-Holland, 1982.1-182.
[12] 陈强顺. 麦克斯韦电磁场方程组的外微分形式 [J]. 物理, 1988(8):468-473.
[13] 陈强顺, 王建成. 微分形式论与外微分应用于电动力学的探讨 [J]. 华侨大学学报(自然科学版), 1992(4):468-475.
[14] 陈强顺, 王建成. 霍奇星算子、余微分及拉-贝算子与二阶电磁场方程 [J]. 华侨大学学报(自然科学版), 1995(3):258-263.
[15] 陈强顺. 微分形式与外微分在电磁场中的应用 [J]. 扬州师院学报(自然科学版), 1990(3):54-63.

相似文献/References:

[1]陈强顺,王建成.微分形式论与外微分应用于电动力学的探讨[J].华侨大学学报(自然科学版),1992,13(4):468.[doi:10.11830/ISSN.1000-5013.1992.04.0468]
 Chen Qiangshun,Wang Jiancheng.Applications of Differential Form Theory and Exterior Differential to the Electrodynamics[J].Journal of Huaqiao University(Natural Science),1992,13(3):468.[doi:10.11830/ISSN.1000-5013.1992.04.0468]

更新日期/Last Update: 2014-03-23