[1]林珍连,黄心中.拟交比同胚的偏差估计[J].华侨大学学报(自然科学版),2001,22(3):232-236.[doi:10.3969/j.issn.1000-5013.2001.03.003]
 Lin Zhenlian,Huang Xinzhong.Distortion Estimates for Quasihommographies[J].Journal of Huaqiao University(Natural Science),2001,22(3):232-236.[doi:10.3969/j.issn.1000-5013.2001.03.003]
点击复制

拟交比同胚的偏差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第22卷
期数:
2001年第3期
页码:
232-236
栏目:
出版日期:
2001-07-20

文章信息/Info

Title:
Distortion Estimates for Quasihommographies
文章编号:
1000-5013(2001)03-0232-05
作者:
林珍连黄心中
华侨大学经济管理学院, 泉州362011
Author(s):
Lin Zhenlian Huang Xinzhong
College of Econ. Manag., Huaqiao Univ., 362011, Quanzhou
关键词:
拟交比同胚 拟对称函数 偏差估计
Keywords:
quasihommographies quasisymmetric function distorion estimate
分类号:
O174.55
DOI:
10.3969/j.issn.1000-5013.2001.03.003
摘要:
研究单位圆周上拟交比同胚的一些偏差估计,并对拟交比同胚作为 ρ-拟对称函数中的 ρ的上界给出估计,其结果改进了近期由 Zajac得到的相应结果
Abstract:
Some distortion estimates of qusihommographies on unit circle are studied.Estimate is also given to the upper bound of ρ for quasihommographies to be regarded as ρ quasisymmetric function. These results improve the corresponding results obtained by Zajac recently.

参考文献/References:

[1] Krzy J G. Quasicircles and harmonic measure [J]. Annales Academic Scientiarum Fennicae Mathematica, 1987.19-24.
[2] Zajac J. Quasisymmetric functions and quasihomographies of the unit circle [J]. Annals of Univ Mariae Curie-Sklodowska Sectio A, 1990, (10):87-99.
[3] ANDERSON G D, Vamanamurthy M K, Vuorinnen M. Distortion function for plane quasiconformal mappings [J]. Israel Journal of Mathematics, 1988(1):1-16.doi:10.1007/BF02767349.

相似文献/References:

[1]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(3):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[2]龙波涌,黄心中.Beurling-Ahlfors延拓的伸张函数之估计[J].华侨大学学报(自然科学版),2004,25(2):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
 Long Boyong,Huang Xinzhong.Estimating Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(3):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
[3]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(3):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[4]王朝祥.Beurling-Ahlfors扩张伸张函数的估计[J].华侨大学学报(自然科学版),2009,30(1):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]
 WANG Chao-xiang.Estimates of the Dilatation Function for Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2009,30(3):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]
[5]林珍连.拟交比同胚作为拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2006,27(1):28.[doi:10.3969/j.issn.1000-5013.2006.01.007]
 Lin Zhenlian.Deviation Estimation for Quasihomographies as a Quasi-Symmetric Function[J].Journal of Huaqiao University(Natural Science),2006,27(3):28.[doi:10.3969/j.issn.1000-5013.2006.01.007]

更新日期/Last Update: 2014-03-23