参考文献/References:
[1] 刘法贵. 正压气体运动方程组柯西问题 [J]. 数学物理学报, 1995(3):332-336.
[2] Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics--Publications mathematiques d’Osay [M]. Paris:Sud, 1978.46-53.
[3] Lin Longwei, Zheng Yongshu. Existence and nonexistence of global smooth solutions for quasilinear hyperbolic systems [J]. 数学年刊B辑(英文版), 1988(9):372-377.
[4] 王剑华, 李才中. 耗散拟线性双曲型方程组的整体光滑解及其奇性的形成 [J]. 数学年刊A辑, 1988(9):509-523.
[5] Zheng Yongshu. Global smooth solution for systems of gas dynamics with the dissipation [J]. Acta Mathematica Scientia, 1987(4):383-396.
[6] Lin Longwei, Yang Tong. Existence and nonexistence of global smooth solutions for damped p-system with"really large initial data” [J]. Journal of Partial Differential Equations, 1991(2):45-51.
[7] Zheng Yongshu. Vacuum problem for the damped p-system [J]. Acta Mathematica Scientia, 1995(2):235-240.
[8] Zhu Changjiang. Global resoluability for a viscoelastic model with relaxation [J]. Proceedings of the Royal Society of Edinburgh Section A, 1995.1277-1285.
[9] Yang Tong, Zhu Changjiang, Zhao Huijiang. Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms [J]. Proceedings of the Royal Society of Edinburgh Section A, 1997.1311-1324.
[10] 朱长江, 李才中, 赵会江. 一类非严格双曲型守恒律整体连续解的存在性 [J]. 数学物理学报, 1994(1):1-12.
[11] 朱长江, 赵会江. 一类拟线性波动方程解的存在性、唯一性和稳定性 [J]. 数学年刊A辑, 1997(2):223-234.
[12] 郑永树. 具耗散项的绝热气动力学方程组整体光滑解 [J]. 数学年刊A辑, 1996(2):155-162.
相似文献/References:
[1]曾文平.具耗散项二阶双曲型方程分组显式方法[J].华侨大学学报(自然科学版),2001,22(3):237.[doi:10.3969/j.issn.1000-5013.2001.03.004]
Zeng Wenping.Grouping Explicit Method for Solving Second -Order Hyperbolic Equation with Term of Dissipation[J].Journal of Huaqiao University(Natural Science),2001,22(4):237.[doi:10.3969/j.issn.1000-5013.2001.03.004]
[2]郑永树.具松弛项的欧拉方程组的整体光滑解[J].华侨大学学报(自然科学版),2004,25(2):121.[doi:10.3969/j.issn.1000-5013.2004.02.003]
Zheng Yongshu.Globally Smoothing Solution to Euler’s Equations with Relaxation Term[J].Journal of Huaqiao University(Natural Science),2004,25(4):121.[doi:10.3969/j.issn.1000-5013.2004.02.003]
[3]金相华,曾文平.解四阶抛物型方程的若干新的差分格式[J].华侨大学学报(自然科学版),2006,27(3):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]
Jin Xianghua,Zeng Wenping.Several New Difference Schemes for Solving Fourth Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2006,27(4):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]
[4]单双荣.二维抛物型方程的高稳定性两层显式格式[J].华侨大学学报(自然科学版),2008,29(4):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
SHAN Shuang-rong.Two-Level Explicit Difference Schemes with Higher Stability Properties for Solving the Equation of Two-Dimensional Parabolic Type[J].Journal of Huaqiao University(Natural Science),2008,29(4):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
[5]徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
XU Jin-ping,SHAN Shuang-rong.An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(4):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]