[1]曾文平.Burger’s方程的若干AGE方法[J].华侨大学学报(自然科学版),2000,21(3):221-227.[doi:10.3969/j.issn.1000-5013.2000.03.001]
 Zeng Wenping.Several Alternating Group Explicit Method for Solving Burger’s Equation[J].Journal of Huaqiao University(Natural Science),2000,21(3):221-227.[doi:10.3969/j.issn.1000-5013.2000.03.001]
点击复制

Burger’s方程的若干AGE方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第21卷
期数:
2000年第3期
页码:
221-227
栏目:
出版日期:
2000-07-20

文章信息/Info

Title:
Several Alternating Group Explicit Method for Solving Burger’s Equation
文章编号:
1000-5013(2000)03-0221-07
作者:
曾文平
华侨大学管理信息科学系, 泉州362011
Author(s):
Zeng Wenping
Dept. of Manag. Info. Sci., Huaqiao Univ., 362011, Quanzhou
关键词:
Burger’s方程 交替分组显式格式 稳定性
Keywords:
Burger’s equation alternating group explicit scheme stability
分类号:
O241
DOI:
10.3969/j.issn.1000-5013.2000.03.001
摘要:
以求解 Burger’s方程的中心差分格式、显式逆风格式、Samarskii格式及修正 Dennis格式为基础,构造了若干新的 AGE方法 (即分别称为 C- AGE,U- AGE、S- AGE和 M- AGE方法 ),讨论了方法的线性化稳定性 .数值结果表明,对于求解 Burger’s方程大 Reynold数问题,除了 C- AGE方法外,文中所构造的其他 AGE方法明显优于 Evans的分组显式方法 .
Abstract:
For solving Burger’s equation,several new alternating group explicit(AGE)methods which are known as C AGE,U AGE,S AGE and M AGE methods are constructed on the basis of central difference scheme,explicit upwind scheme,Samarskii scheme and modified Dinnes scheme.A discussion is devoted to the linearized stability of these methods.In addition to C AGE methods,the AGE methods presented here is obviously better than Evans group explicit method for solving Burger’s equation with a large Reynold’s number.

参考文献/References:

[1] Evans D J, Abdullah A R B. A new explicit method for the diffusion equation [A]. New York, Pineridge Press, 1983.330-347.
[2] Evans D J, Abdullah A R B. The group explicit method for the solution of Burger’s equation [J]. Computing, 1984.32, 239-253.
[3] Evans D J, Sahimi M S. The numerical solution of Burger’s equation by the alternating group explieit(AGE)method [J]. International Journal of Computer Mathematics, 1989.39-64.doi:10.1080/00207168908803747.
[4] 王子丁, 陆金甫, 肖世江. Burger’s方程的一个分组显式格式 [J]. 计算物理, 1993.10, 4, 479-487.
[5] 汤华中, 戴嘉尊. Burger’s方程的一类组显式差分格式 [J]. 南京理工大学学报(自然科学版), 1995(1):53-57.
[6] 陆金甫. 对流-扩散方程的一些单调性差分格式 [J]. 计算物理, 1991(2):157-164.
[7] 康立山, 全惠云. 数值解高维偏微分方程 [M]. 上海:上海科学技术出版社, 1990.8-10.

相似文献/References:

[1]曾文平.Burger’s方程的逆风型组显格式[J].华侨大学学报(自然科学版),1998,19(4):339.[doi:10.11830/ISSN.1000-5013.1998.04.0339]
[2]曾文平.对流-扩散方程若干AGE格式及其稳定性[J].华侨大学学报(自然科学版),1999,20(3):230.[doi:10.11830/ISSN.1000-5013.1999.03.0230]
 Zeng Wenping.Several Alternatively Grouping Explicit Schemes for Convection Diffusion Equation and Their Stability[J].Journal of Huaqiao University(Natural Science),1999,20(3):230.[doi:10.11830/ISSN.1000-5013.1999.03.0230]
[3]曾文平.Burger’s方程的AGE与ADE方法比较[J].华侨大学学报(自然科学版),2000,21(2):116.[doi:10.3969/j.issn.1000-5013.2000.02.002]
 Zeng Wenping.Comparing Alternating Group Explicit Method with Alternating Direction Explicit Method for Solving Burger’s Equation[J].Journal of Huaqiao University(Natural Science),2000,21(3):116.[doi:10.3969/j.issn.1000-5013.2000.02.002]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目
更新日期/Last Update: 2014-03-23