[1]曾文平,郑邵鹏.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1999,20(4):339-344.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
 Zeng Wenping,Zheng Shaopeng.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1999,20(4):339-344.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
点击复制

两类新的高稳定性的三层显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第20卷
期数:
1999年第4期
页码:
339-344
栏目:
出版日期:
1999-10-20

文章信息/Info

Title:
Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability
作者:
曾文平郑邵鹏
华侨大学管理信息科学系, 泉州 362011
Author(s):
Zeng Wenping Zheng Shaopeng
关键词:
高阶演化方程 显式差分格式 稳定性分析
Keywords:
high order evolution equation explicit difference schemes stability analysis
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.1999.04.0339
摘要:
提出解高阶演化方程u/t= a(2k+ 1u)/x2k+ 1(其中a≠0 为常数,k= 1,2,3,…)的两类新的具有高稳定性的三层显式差分格式,较大地改进了同类格式的稳定性条件. 数值例子表明,文中所作的稳定性分析是正确的.
Abstract:
Two new classes of three level explicit difference schemes with higher stability are advanced for solving high order evolution equation ut=a 2k+1 ux 2k+1 (where a ≠0 is a constant, k =1,2,3,…)with higher stability.By which the stability condition of s

相似文献/References:

[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(4):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[3]曹文平.高阶发展方程的两类显式格式的稳定性分析[J].华侨大学学报(自然科学版),1996,17(3):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
 Zeng Wenping.Stability Analysis of Two Classes of Explicit DifferenceSchemes for High-Order Evolution Equations[J].Journal of Huaqiao University(Natural Science),1996,17(4):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
[4]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(4):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[5]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(4):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[6]曾文平.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1998,19(3):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
 Zeng Wenping.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1998,19(4):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
[7]曾文平.高阶演化方程任意阶精度的显式格式[J].华侨大学学报(自然科学版),2000,21(1):1.[doi:10.3969/j.issn.1000-5013.2000.01.001]
 Zeng Wenping.Explicit Difference Schemes of Higher Evolution Equation with Accuracy of Arbitrary Order[J].Journal of Huaqiao University(Natural Science),2000,21(4):1.[doi:10.3969/j.issn.1000-5013.2000.01.001]
[8]曾文平.四阶杆振动方程的含参数四层显式格式[J].华侨大学学报(自然科学版),2002,23(2):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
 Zeng Wenping.Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration[J].Journal of Huaqiao University(Natural Science),2002,23(4):116.[doi:10.3969/j.issn.1000-5013.2002.02.002]
[9]单双荣.解高阶抛物型方程的三层显式差分格式[J].华侨大学学报(自然科学版),2005,26(3):239.[doi:10.3969/j.issn.1000-5013.2005.03.004]
 Shan Shuangrong.A Three-Layer Explicit Difference Scheme for Solving the Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),2005,26(4):239.[doi:10.3969/j.issn.1000-5013.2005.03.004]
[10]张星,单双荣.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),2010,31(6):703.[doi:10.11830/ISSN.1000-5013.2010.06.0703]
 ZHANG Xing,SHAN Shuang-rong.Explicit Difference Scheme of High Accuracy for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2010,31(4):703.[doi:10.11830/ISSN.1000-5013.2010.06.0703]

更新日期/Last Update: 2014-03-22