[1]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18-24.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(1):18-24.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
点击复制

解二维抛物型方程的恒稳高精度格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第20卷
期数:
1999年第1期
页码:
18-24
栏目:
出版日期:
1999-01-20

文章信息/Info

Title:
A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type
作者:
曾文平
华侨大学管理信息科学系
Author(s):
Zeng Wenping
关键词:
二维抛物型方程 差分格式 高精度 绝对稳定
Keywords:
two dimensional equations of parabolic type difference scheme high accuracy absolutely stable
分类号:
O175.26
DOI:
10.11830/ISSN.1000-5013.1999.01.0018
摘要:
建立了解二维抛物型方程的一族含参数的绝对稳定的高精度的差分格式,进而,在特殊情况(θ=0,r=16)下,得到显式差分格式ωn+1=(1+136+19◇)ωn.这些格式对任意选取的参数θ≤1/6都是绝对稳定的,且当0≤θ≤min(16,12-112r)时,其收敛阶为O((Δt)2)
Abstract:
A family of absolutely stable and high accurate difference schemes containing parameter are set up for solv ing two dimensional equations of parabolic type. And then, an explicit difference scheme (17) is obtained under the special condition of θ =0, r =1

相似文献/References:

[1]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(1):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[2]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(1):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[3]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(1):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[4]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(1):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[5]曾文平.二维抛物型方程精细积分法与差分法比较[J].华侨大学学报(自然科学版),2002,23(1):5.[doi:10.3969/j.issn.1000-5013.2002.01.002]
 Zeng Wengping.Comparison between Meticulous Integration and Difference Method for Solving Two-Dimensional Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2002,23(1):5.[doi:10.3969/j.issn.1000-5013.2002.01.002]
[6]单双荣.高阶Schringer方程的显式差分格式[J].华侨大学学报(自然科学版),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
 Shan Shuangrong.Explicit Difference Schemes for Solving Higher-Order Schringer Equation[J].Journal of Huaqiao University(Natural Science),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
[7]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[8]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[9]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[10]曾文平.Schrdinger方程一族高精度恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(3):237.[doi:10.3969/j.issn.1000-5013.2004.03.003]
 Zeng Wenping.A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving Schrdinger Equation[J].Journal of Huaqiao University(Natural Science),2004,25(1):237.[doi:10.3969/j.issn.1000-5013.2004.03.003]

备注/Memo

备注/Memo:
福建省自然科学基金
更新日期/Last Update: 2014-03-22