[1]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1-5.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(1):1-5.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
点击复制

分段与整体拟对称函数之间的关系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第20卷
期数:
1999年第1期
页码:
1-5
栏目:
出版日期:
1999-01-20

文章信息/Info

Title:
Relation between Piecewise and Global Quasi Symmetric Functions
作者:
黄心中
华侨大学管理信息科学系
Author(s):
Huang Xinzhong
关键词:
拟共形映照 拟对称函数 维数 紧致多面体
Keywords:
quasi conformal mapping quasi symmetric function dimensionality compact polyhedron
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.1999.01.0001
摘要:
探索分段拟对称函数与整体拟对称函数之间的关系.对整段区间上实值严格增加连续函数在分段拟对称的条件下,何时为整体拟对称函数作出研究,并估计其拟对称偏差的上限.改进了最近由Heinonen和Hinkkanen所得的两个相应结果.
Abstract:
A study is made on the relation between piecewise quasi symmetric function and golobal one.For a real valued strictly increasing function on an interval with piecewise quasi symmetric property, the condition that will guarantee the function to be golobal

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(1):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(1):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(1):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[4]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[5]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(1):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[6]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[7]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(1):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[8]林珍连,黄心中.拟交比同胚的偏差估计[J].华侨大学学报(自然科学版),2001,22(3):232.[doi:10.3969/j.issn.1000-5013.2001.03.003]
 Lin Zhenlian,Huang Xinzhong.Distortion Estimates for Quasihommographies[J].Journal of Huaqiao University(Natural Science),2001,22(1):232.[doi:10.3969/j.issn.1000-5013.2001.03.003]
[9]龙波涌,黄心中.Beurling-Ahlfors延拓的伸张函数之估计[J].华侨大学学报(自然科学版),2004,25(2):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
 Long Boyong,Huang Xinzhong.Estimating Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(1):126.[doi:10.3969/j.issn.1000-5013.2004.02.004]
[10]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(1):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[11]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[12]王朝祥.Beurling-Ahlfors扩张伸张函数的估计[J].华侨大学学报(自然科学版),2009,30(1):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]
 WANG Chao-xiang.Estimates of the Dilatation Function for Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2009,30(1):108.[doi:10.11830/ISSN.1000-5013.2009.01.0108]

备注/Memo

备注/Memo:
福建省自然科学基金
更新日期/Last Update: 2014-03-22