[1]王全义.一类Volterra型积分微分方程的稳定性[J].华侨大学学报(自然科学版),1998,19(1):1-5.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
 Wang Quanyi.Stability of a Class of Volterra Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1998,19(1):1-5.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
点击复制

一类Volterra型积分微分方程的稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第19卷
期数:
1998年第1期
页码:
1-5
栏目:
出版日期:
1998-01-20

文章信息/Info

Title:
Stability of a Class of Volterra Integrodifferential Equations
作者:
王全义
华侨大学管理信息科学系
Author(s):
Wang Quanyi
关键词:
积分微分方程 稳定性 渐近稳定性
Keywords:
integrodifferential equation stability asymptotic stability
分类号:
O175.6
DOI:
10.11830/ISSN.1000-5013.1998.01.0001
摘要:
研究了一类Volterra型积分微分方程的零解的稳定性、一致稳定性和渐近稳定性,得到了一些新结果.这些结果具有简单形式,易于验证和应用.
Abstract:
A study is made on the stability, the uniform stability and the asymptotic stability of the zero solution to a class of Volterra integrodifferential equations. The study leads to some new results which are simple in form and easy of verification and appli

相似文献/References:

[1]陈安子,苏剑雄,林健,等.胶束增溶分光光度法联合测定微量锌和铜[J].华侨大学学报(自然科学版),1983,4(1):26.[doi:10.11830/ISSN.1000-5013.1983.01.0026]
[2]许承晃.掺杂KCl激光晶体族与色心族[J].华侨大学学报(自然科学版),1984,5(1):36.[doi:10.11830/ISSN.1000-5013.1984.01.0036]
[3]林云山.一种新型的折迭腔气体激光器[J].华侨大学学报(自然科学版),1988,9(1):16.[doi:10.11830/ISSN.1000-5013.1988.01.0016]
 Lin Yunshan.A New Folded Cavity Gas Laser[J].Journal of Huaqiao University(Natural Science),1988,9(1):16.[doi:10.11830/ISSN.1000-5013.1988.01.0016]
[4]陈子文,杨卫东.积屑瘤的稳定性与显微裂纹[J].华侨大学学报(自然科学版),1991,12(2):190.[doi:10.11830/ISSN.1000-5013.1991.02.0190]
 Chen Ziwen,Yang Weidong.The Stability of Built-up Edge(BUE)and Its Microcracks[J].Journal of Huaqiao University(Natural Science),1991,12(1):190.[doi:10.11830/ISSN.1000-5013.1991.02.0190]
[5]杜耀星.空腹支墩柱在弯矩和剪力耦合作用下的稳定性[J].华侨大学学报(自然科学版),1992,13(4):494.[doi:10.11830/ISSN.1000-5013.1992.04.0494]
 Du Yaoxing.The Stability of Hollow Buttress Pier Column Subjected to the Coupling of Bending Moment and Shearing Force[J].Journal of Huaqiao University(Natural Science),1992,13(1):494.[doi:10.11830/ISSN.1000-5013.1992.04.0494]
[6]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(1):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[7]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(1):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[8]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(1):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[9]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(1):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[10]郑兴华,曾文平.对流方程的分组显式方法[J].华侨大学学报(自然科学版),1998,19(2):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]
 Zheng Xinghua,Zeng Wenping.Grouping Explicit Method for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),1998,19(1):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]
[11]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
 Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(1):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]

备注/Memo

备注/Memo:
国务院侨办重点科研基金
更新日期/Last Update: 2014-03-22