[1]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122-127.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):122-127.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
点击复制

解四阶抛物型方程的高精度显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第18卷
期数:
1997年第2期
页码:
122-127
栏目:
出版日期:
1997-04-20

文章信息/Info

Title:
Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation
作者:
曾文平
华侨大学管理信息科学系, 泉州 362011
Author(s):
Zeng Wenping
关键词:
四阶抛物型方程 高精度 显式差分格式
Keywords:
four order parabolic equation high accuracy explicit difference scheme
分类号:
O175.26
DOI:
10.11830/ISSN.1000-5013.1997.02.0122
摘要:
提出解四阶抛物型方程ut+uxxxx=0的一个三层显式差分格式.其稳定性条件和局部截断误差分别为r=△t/△x4<1/8和O(△t2十△x4).
Abstract:
A three-level explicit difference scheme is proposed for solving four-order parabolic equation Ul+Uxxxx=0. The scheme meets a stability condition of r= △t/△x4<1/8 and shows a local truncation error of 0(△t2 + △x4 ).

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(2):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(2):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[6]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(2):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[7]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[8]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[9]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[10]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(2):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[11]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[12]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[13]张星,单双荣.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),2010,31(6):703.[doi:10.11830/ISSN.1000-5013.2010.06.0703]
 ZHANG Xing,SHAN Shuang-rong.Explicit Difference Scheme of High Accuracy for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2010,31(2):703.[doi:10.11830/ISSN.1000-5013.2010.06.0703]
[14]崔晓鹏,单双荣.解四阶抛物型方程的两层高精度差分格式[J].华侨大学学报(自然科学版),2011,32(6):710.[doi:10.11830/ISSN.1000-5013.2011.06.0710]
 CUI Xiao-peng,SHAN Shuang-rong.High-Accurate and Two-Layer Difference Schemes for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2011,32(2):710.[doi:10.11830/ISSN.1000-5013.2011.06.0710]

备注/Memo

备注/Memo:
福建省自然科学基金
更新日期/Last Update: 2014-03-22