[1]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111-115.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(2):111-115.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
点击复制

参数表示下的拟共形映照()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第18卷
期数:
1997年第2期
页码:
111-115
栏目:
出版日期:
1997-04-20

文章信息/Info

Title:
Quasiconformal Mappings with Parametric Representation
作者:
黄心中
华侨大学管理信息科学系, 泉州 362011
Author(s):
Huang Xinzhong
关键词:
拟共形映照 偏差定理 拟并形扩张 参数表示
Keywords:
quasiconformal mapping distortion theorem quasiconformal extension parametric representation
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.1997.02.0111
摘要:
改进了Reich关于单位圆内拟共形映照的一个偏差定理,其应用给出了在参数表示下N类拟共形映照的伸缩商的更好估计.
Abstract:
A distortion theorem set up by Reich on quasiconformal mapping in unit disk is improved by the author. Its application leads to the obtaining of a better estimate for the complex dilatation of N-set quasiconformal mappings with parametric representation.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(2):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(2):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[4]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(2):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[5]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(2):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[6]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(2):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[7]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(2):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[8]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(2):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[9]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(2):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
[10]吴瑞溢,黄心中.Salagean类单叶调和函数的特征[J].华侨大学学报(自然科学版),2008,29(2):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]
 WU Rui-yi,HUANG Xin-zhong.The Characteristic of Salagean-Type Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2008,29(2):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]
[11]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]

备注/Memo

备注/Memo:
福建省自然科学基金
更新日期/Last Update: 2014-03-22