[1]王子丁.解高维Schrodinger方程的一类稳定的显格式[J].华侨大学学报(自然科学版),1995,16(1):13-15.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
 Wang Ziding.A Class of Stable Explicit Schemes for Solving Higher Dimensional Schr dinger Equations[J].Journal of Huaqiao University(Natural Science),1995,16(1):13-15.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
点击复制

解高维Schrodinger方程的一类稳定的显格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第16卷
期数:
1995年第1期
页码:
13-15
栏目:
出版日期:
1995-01-20

文章信息/Info

Title:
A Class of Stable Explicit Schemes for Solving Higher Dimensional Schr dinger Equations
作者:
王子丁
华侨大学管理信息科学系
Author(s):
Wang Ziding
关键词:
差分格式 差分格式稳定性 高维
Keywords:
difference schemes stability of difference schemes higher-dimension
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.1995.01.0013
摘要:
对高维的方程,利用加耗散项的方法,建立一类绝对稳定的三层格式,包含了DUFort-Frankel型差分格式的结果.
Abstract:
For solving higher dimensional equations,a class of absolutely stable and three level schemes including the results of Du Fort-Frankel type difference scheme are derived by adding dissipative term.

相似文献/References:

[1]曾文平.三层对称差分格式的稳定性[J].华侨大学学报(自然科学版),1986,7(3):231.[doi:10.11830/ISSN.1000-5013.1986.03.0231]
 Zeng Wenping.The Stability of Three Layer Symmetric Difference Schemes[J].Journal of Huaqiao University(Natural Science),1986,7(1):231.[doi:10.11830/ISSN.1000-5013.1986.03.0231]
[2]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(1):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
[3]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(1):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
[4]曾文平.四阶抛物型方程的三层恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(4):349.[doi:10.3969/j.issn.1000-5013.2004.04.003]
 Zeng Wenping.Three Layered Steady Difference Scheme for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(1):349.[doi:10.3969/j.issn.1000-5013.2004.04.003]

更新日期/Last Update: 2014-03-22