[1]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257-262.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(3):257-262.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
点击复制

一族绝对稳定的高精度差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第15卷
期数:
1994年第3期
页码:
257-262
栏目:
出版日期:
1994-07-20

文章信息/Info

Title:
A Family of Absolutely Stable and High Accurate Difference Schemes
作者:
曾文平
华侨大学管理信息科学系
Author(s):
Zeng Wenping
关键词:
差分格式 抛物型方程 三维 高准确度 绝对稳定
Keywords:
difference schemes parabolic equations three-dimension high accuracy absolutely stable
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.1994.03.0257
摘要:
建立了解三维抛物型方程的一族含参数的绝对稳定的高精度差分格式.李荣华等的结果可以看作两层差分格式的特例.进而,在特殊情况(θ=0,r=1/6)下,我们得到显式差分格式.我们证明了这些格式对任意选取的参数θ≤1/3都是绝对稳定的且其截断误差阶为0(Δt)2+Δt(Δx)2+(Δx)4)=0((Δt)2).
Abstract:
For solving three-dimensional parabolic equation, the author establishes a family of absolutely stable and high accurate difference schemes with a parameter.The results of reference may be regarded as special cases of two-level difference scheme. Moreover

相似文献/References:

[1]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(3):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
[2]王子丁.解高维Schrodinger方程的一类稳定的显格式[J].华侨大学学报(自然科学版),1995,16(1):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
 Wang Ziding.A Class of Stable Explicit Schemes for Solving Higher Dimensional Schr dinger Equations[J].Journal of Huaqiao University(Natural Science),1995,16(3):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
[3]曾文平.四阶抛物型方程的三层恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(4):349.[doi:10.3969/j.issn.1000-5013.2004.04.003]
 Zeng Wenping.Three Layered Steady Difference Scheme for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(3):349.[doi:10.3969/j.issn.1000-5013.2004.04.003]

更新日期/Last Update: 2014-03-22