[1]高鹏遐,吴绍敏.几何分布场合步加应力寿命试验的贝叶斯分析[J].华侨大学学报(自然科学版),1994,15(2):139-147.[doi:10.11830/ISSN.1000-5013.1994.02.0139]
 Gao Pengxia,Wu Shaomin.Bayesian Analysis of Stepstress Accelerated Life Test under Geometric Distribution[J].Journal of Huaqiao University(Natural Science),1994,15(2):139-147.[doi:10.11830/ISSN.1000-5013.1994.02.0139]
点击复制

几何分布场合步加应力寿命试验的贝叶斯分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第15卷
期数:
1994年第2期
页码:
139-147
栏目:
出版日期:
1994-04-20

文章信息/Info

Title:
Bayesian Analysis of Stepstress Accelerated Life Test under Geometric Distribution
作者:
高鹏遐吴绍敏
福建师范大学数学系; 华侨大学管理信息科学系
Author(s):
Gao Pengxia Wu Shaomin
关键词:
步进应力 加速寿命试验 几何分布 贝叶斯分析
Keywords:
stepstress accelerated life test geometric distribution Bayesian analyses
分类号:
O213.2
DOI:
10.11830/ISSN.1000-5013.1994.02.0139
摘要:
在几何分布场合下,由步进应力加速寿命试验获得定时和定数截尾试验数据.应用两种方法,给出平均寿命的点估计,并给出平均寿命的量信下限.
Abstract:
Under geometric distribution,the data of fixed time and fixed number truncation test are obtained from stepstress accelerated life test.With thess data,the point estimate and fiducial lower limit of main life are given by applying two methods.

相似文献/References:

[1]吴绍敏.恒定应力加速寿命试验指数部件可靠性的Bayes估计[J].华侨大学学报(自然科学版),1990,11(2):109.[doi:10.11830/ISSN.1000-5013.1990.02.0109]
 Wu Shaumin.Bayes Estimate of Reliability of Exponential Units under Constant Stress Accelerating Life Testing[J].Journal of Huaqiao University(Natural Science),1990,11(2):109.[doi:10.11830/ISSN.1000-5013.1990.02.0109]
[2]吴绍敏.恒定应力加速寿命试验下产品生存率的Bayes估计[J].华侨大学学报(自然科学版),1991,12(3):265.[doi:10.11830/ISSN.1000-5013.1991.03.0265]
 We Shcomin.Bayes Estimate of the Survival Rate of Products Subjected to Accelerated Life Testing under Constant Stress[J].Journal of Huaqiao University(Natural Science),1991,12(2):265.[doi:10.11830/ISSN.1000-5013.1991.03.0265]
[3]彭沛,吴绍敏.几何分布场合恒加应力寿命试验的Bayes分析[J].华侨大学学报(自然科学版),1994,15(4):374.[doi:10.11830/ISSN.1000-5013.1994.04.0374]
 Pen Pei,Wu Shaomin.Bayesian Analysis of Constant Stress Accelerated Life Testing under Geometric Distribution[J].Journal of Huaqiao University(Natural Science),1994,15(2):374.[doi:10.11830/ISSN.1000-5013.1994.04.0374]
[4]彭霈,吴绍敏.指数分布场合恒定应力加速寿命试验的Bayes分析[J].华侨大学学报(自然科学版),1995,16(2):134.[doi:10.11830/ISSN.1000-5013.1995.02.0134]
 Peng Pei,Wu Shaomin.Bayesian Analysis of Accelerated life Testing under Exponential Distribution[J].Journal of Huaqiao University(Natural Science),1995,16(2):134.[doi:10.11830/ISSN.1000-5013.1995.02.0134]
[5]吴绍敏,彭沛.指数分布场合步进应力加速寿命试验的可靠性评定[J].华侨大学学报(自然科学版),1996,17(2):111.[doi:10.11830/ISSN.1000-5013.1996.02.0111]
 Wu Shaomin,Pen Pei.Reliability Evaluation of Stepwise Stress Accelerated Life Testing under Exponential Distribution[J].Journal of Huaqiao University(Natural Science),1996,17(2):111.[doi:10.11830/ISSN.1000-5013.1996.02.0111]
[6]程细玉,吴绍敏.Weibull分布场合恒加寿命试验统计分析[J].华侨大学学报(自然科学版),1998,19(4):334.[doi:10.11830/ISSN.1000-5013.1998.04.0334]
[7]吴绍敏,程细玉.Weibull分布步加应力寿命试验统计分析[J].华侨大学学报(自然科学版),1999,20(2):109.[doi:10.11830/ISSN.1000-5013.1999.02.0109]
 Wu Shaomin,Cheng Xiyu.Statistical Analysis of Stepwisely Stress Accelerated Life Test for the Occasion of Weibull Distribution[J].Journal of Huaqiao University(Natural Science),1999,20(2):109.[doi:10.11830/ISSN.1000-5013.1999.02.0109]

更新日期/Last Update: 2014-03-22