[1]曾文平.2-块AOR迭代解最小二乘问题的最优收敛性[J].华侨大学学报(自然科学版),1994,15(1):1-5.[doi:10.11830/ISSN.1000-5013.1994.01.0001]
Zeng Wenping.Optimal Convergence of Two-Block AOR Iteration for Solving Least Square Problems[J].Journal of Huaqiao University(Natural Science),1994,15(1):1-5.[doi:10.11830/ISSN.1000-5013.1994.01.0001]
点击复制
2-块AOR迭代解最小二乘问题的最优收敛性()
《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]
- 卷:
-
第15卷
- 期数:
-
1994年第1期
- 页码:
-
1-5
- 栏目:
-
- 出版日期:
-
1994-01-20
文章信息/Info
- Title:
-
Optimal Convergence of Two-Block AOR Iteration for Solving Least Square Problems
- 作者:
-
曾文平
-
华侨大学管理信息科学系
- Author(s):
-
Zeng Wenping
-
-
- 关键词:
-
最小二乘问题; 2-块AOR迭代; 收敛性
- Keywords:
-
least square problem; two-block AOR iteration; convergence
- 分类号:
-
O241.2
- DOI:
-
10.11830/ISSN.1000-5013.1994.01.0001
- 摘要:
-
讨论用2-块AOR迭代法解大型稀疏最小二乘问题的收敛性,给出其收敛的充要条件及其收敛域.进而证明; 当时,AOR迭代矩阵的谱半径,它远比相应的最优2-块AOR迭代矩阵的谱半径好得多.
- Abstract:
-
For solving large-scale sparse least square problems,the author discusses the convergence of two-block AOR iterative method; and gives the necessary and sufficient conditions and the domain of its convergence; and further demonstrates that the spectral ra
备注/Memo
- 备注/Memo:
-
福建省自然科学基金
更新日期/Last Update:
2014-03-22