2-块 AOR 迭代解最小二乘问题 的最优收敛性*

(华侨大学管理信息科学系,泉州 362011)

摘要 讨论用 2-块 AOR 迭代法解大型稀疏最小二乘问题的收敛性,给出其收敛的充要条件及其 收敛域. 进而证明: 当 $\beta = \beta$ 时, AOR 迭代矩阵的谱半径 $\rho(L_{r,\bullet}^{(2)}) = 0$, 它远比相应的最优 2-块 AOR 迭代矩阵的谱半径好得多.

关键词 最小二乘问题,2-块 AOR 迭代,收敛性 分类号 O 241.2

诸如大地测量等很多实际问题,最终都导致用最小二乘法求解超定方程组 Ax=b(式 A), 其中, $A \in R^{m \times n}$ (m > n), $b \in R^n$,且设 Rnak(A)=n.熟知,式(A)的最小二乘解不止1个,但其 中,满足欧氐范数最小的最小二乘问题为 $\|b-Ax\|_2 = \min_{x \in S} \|b-Ay\|_2$. 它满足法方程组 A^TAx $=A^{T}b$. 众所周知,上述最小二乘问题等价于求 $x \in R^{n}$ 和 $Y \in R^{m}$,使得 Y + Ax = b 和 $A^{T}Y = 0$ (式 B). 1975 年, Chen 和 Gentheman 首先建议用 3-块 SOR 迭代解最小二乘问题. 最近, Markham, Neumann 和 Plemmons (1)提出用 2-块 SOR 方法解最小二乘问题. 利用 Young (2)的 结果,给出用 2 块 SOR 方法解最小二乘问题时的收敛域,并给出最佳松驰因子及最小谱半径 的表达式,同时进一步指出用 2-块最优 SOR 方法求解最小二乘问题,比用 3-块最优 SOR 方 法求解最小二乘问题的谱半径小. 本文目的在于讨论应用 2-块 AOR 迭代求解最小二乘问题 的收敛性,给出其收敛的充要条件(对任意 Jacobi 阵 J_2 的谱半径 $\rho(J_2)$ 都可以). 同时,证明当 μ 接近 μ 时,可以找到使 AOR 迭代的谱半径 $\rho(L_{Y,\omega})=0$ 的 ω ,γ 值,此时 AOR 方法显然优于最 优 SOR 方法.

AOR 迭代矩阵和 Jacobi 迭代矩阵特征值之间的关系

因为 A 为列满秩,总可以通过适当的排列使 A,Y 和 B,具有如下的分块形状 $A = \begin{pmatrix} A_1 \\ A \end{pmatrix}$,其 中, A_1 是 $n \times n$ 的非奇异矩阵, Y_1 , b_1 为 n 维向量,而 Y_2 , b_2 为 (m-n) 维向量 $Y = {Y_1 \choose Y_2}$, $b = {Y_1 \choose Y_2}$

^{*} 本文 1993-10-13 收到;福建省自然科学基金资助项目

 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. 于是,式(B)可表示为如下等价形式

$$CZ = d, (1)$$

其中

$$C = \begin{bmatrix} A_1 & O & I \\ A_2 & I & O \\ O & A_2^{\mathsf{T}} & A_1^{\mathsf{T}} \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ O \end{bmatrix}. \tag{2}$$

因为 A_1 非奇异,故(m+n)×(m+n)矩阵 C 也非奇异.为了研究用 2-块 AOR 迭代法求解最小二乘问题(1)的解,我们把矩阵 C 划分成如下两块形式,并记

$$C \equiv C_{2} \equiv \begin{bmatrix} A_{1} & O & I \\ A_{2} & I & O \\ O & A_{2}^{T} & A_{1}^{T} \end{bmatrix}, \quad D_{2} \equiv \begin{bmatrix} A_{1} & O & O \\ A_{2} & I & O \\ O & O & A_{1}^{T} \end{bmatrix},$$

$$L_{2} \equiv \begin{bmatrix} O & O & O \\ O & O & O \\ O & -A_{2}^{T} & O \end{bmatrix}, \quad U_{2} \equiv \begin{bmatrix} O & O & -I \\ O & O & O \\ O & O & O \end{bmatrix}. \tag{3}$$

相应的 Jacobi 迭代矩阵则为

$$J_2 \equiv D_2^{-1}(L_2 + U_2) = \begin{bmatrix} O & O & -A_1^{-1} \\ O & O & A_2A_1^{-1} \\ O & -(A_2A_1^{-1})^T & O \end{bmatrix}. \tag{4}$$

显知, J_2 是 1 个具有相容次序的 2-弱循环阵.由式(4)可知,由于 $-(A_2A_1^{-1})^T(A_2A_1^{-1})$ 为非负定矩阵,所以

$$J_2^2 = \operatorname{diag}\{0, -(A_2A_1^{-1})(A_2A_1^{-1})^T, -(A_2A_1^{-1})^T(A_2A_1^{-1})\}$$
 (5)

相似于 1 个实对称负半定矩阵,故 J_2 的全部特征值为纯虚数 $\mu^2 \leq 0$,且 $|\bar{\mu}| = \rho(J_2) = \|A_2A_1^{-1}\|$ $\|A_2A_1^{-1}\|$ $\|A_2A_1^{-1}\|$ $\|A_2A_1^{-1}\|$ 的全部特征值都落在区间 $[-\rho^2(J_2),0]$ 内.这一事实将对收敛性定理的证明起重要作用.用 2-块 AOR 迭代求解最小二乘问题(1)时,其迭代格式为

$$\mathbf{Z}^{(K+1)} = L_{7,\omega}^{(2)} \mathbf{Z}^{(K)} + (\mathbf{D}_2 - \omega \mathbf{L}_2)^{-1} \mathbf{d}, \tag{6}$$

其中 AOR 迭代矩阵为

$$L_{\gamma,\omega}^{(2)} = (D_2 - \gamma L_2)^{-1} \{ (1 - \omega) D_2 + (\omega - \gamma) L_2 + \omega U_2 \}, \tag{7}$$

这里 D_2 , L_2 , U_2 由式(3)所定义. 为了讨论用 2-块 AOR 迭代解(1)的收敛性, 先给出解(1)的 AOR 步代矩阵 $L_2^{(2)}$ 以及相应的 Jacobi 迭代矩阵 J_2 的特征值之间的关系.

引理 1 设 A 为有相容次序的 2-循环阵,其对角线上块子矩阵 $A_{i,i}(i=1,2)$ 非奇异,若 $\omega \neq 0$ 且 $\lambda Y + \omega - Y \neq 0$,则 AOR 迭代矩阵 $L_{7.0}$ 的特征值 λ 及其相伴的 Jacobi 迭代矩阵的特征值 μ 之间,满足如下函数关系式

$$(\lambda + \omega - 1)^2 = (\lambda \gamma + \omega - \gamma)\omega \mu^2. \tag{8}$$

证 注意到文〔3〕中所指出,AOR 迭代可看作 SOR 迭代的外推,则 $L_{r,v}$ 的特征值 λ 与 $L_{r,v}$ 的特征值 v 之间,有 $\lambda = sv + (1-s)$ 关系,其中 $s = \omega/\gamma$, $\gamma \neq 0$. 从中解出 $v = (\lambda + s - 1)/s$,代入文 〔4〕中定理 4. 3 的函数关系式(2. 2)(注意此时 $\omega = \gamma$, $\lambda = v$, $\rho = 2$),即得

$$(\lambda + s\gamma - 1)^2 = s(\lambda + s - 1)\gamma^2 \mu^2,$$

再代入 $s=\omega/\gamma$, 便得式(8). 证毕.

2 2-块 AOR 迭代收敛的充要条件

引理 $2^{(2)}$ 实系数二次方程 $x^2 + px + r = 0$ 的两根按模小于 1 的充要条件为 |r| < 1,且 |p| < 1 + r.

定理 1 当 2-块 AOR 迭代(6)应用于解最小二乘问题(1)时,且定义参数 $\beta = \rho(J_2) = \max I_m(\mu) = \max |\beta| = \|A_2A_1^{-1}\|_2$ 及 $\beta = \min |I_m(\mu)| = \min |\beta|$,则 2-块 AOR 迭代(9)收敛 $\mu \in \rho(J_2)$

(即 $\rho(L_{r,s}^{(2)})$ <1),当且信当 ω, γ 分别取值 I_{ω} 及 I_{r} 即

(i)
$$\beta \neq 0$$
, $I_{\omega} \equiv (-\infty, 0)$, $\exists I_{\gamma} \equiv (M(\overline{\beta}^{2}), N(\beta^{2}))$, $\exists I_{\gamma} \equiv (N(\overline{\beta}^{2}), M(\overline{\beta}^{2}))$, $\exists I_{\gamma} \equiv (N(\overline{\beta}^{2}), M(\overline{\beta}^{2}))$, $\exists I_{\gamma} \equiv (N(\beta^{2}), M(\overline{\beta}^{2}))$; (ii) $\beta = 0$, $I_{\omega} \equiv (0, 2)$, $\exists I_{\gamma} \equiv (N(\overline{\beta}^{2}), M(\overline{\beta}^{2}))$.

其中

$$\begin{cases}
M(Z) \equiv \frac{1}{\omega Z} \left\{ \frac{1}{2} (1+Z)\omega^2 + 2(1-\omega) \right\}, \\
N(Z) \equiv \frac{1}{Z} \left\{ -2 + \omega(1+Z) \right\}.
\end{cases} \tag{9}$$

证 因 Jacobi 阵 J_2 的特征值全为纯虚数,故令 $\mu=i\beta(\beta$ 为实数)代入式(8)得($\lambda+\omega-1$)² = $-\omega\beta^2(\gamma\lambda-\gamma+\omega)$,或展开得 $\lambda^2-(2(1-\omega)-\omega\gamma\beta^2)+((1-\omega)^2+\omega\beta^2(\omega-\gamma))=0$. 则由引理 2 得

$$|\lambda| < 1 \Leftrightarrow \begin{cases} |(1-\omega)^{2} + \omega\beta^{2}(\omega - \gamma)| < 1, \\ |2(1-\omega) - \omega\gamma\beta^{2}| < 1 + (1-\omega)^{2} + \omega\beta^{2}(\omega - \gamma). \end{cases}$$

$$(a)\omega\gamma\beta^{2} < 2(1-\omega)' + \omega^{2}(1+\beta^{2}),$$

$$(b)\omega\gamma\beta^{2} > -2\omega + \omega^{2}(1+\beta^{2}),$$

$$(c)\omega\gamma\beta^{2} < 2(1-\omega) + \frac{1}{2}\omega^{2}(1+\beta^{2}),$$

$$(d)\omega^{2}(1+\beta^{2}) > 0.$$

$$(10)$$

所以,式(10)的(d)对任意实数 ω≠0 及 β 均成立. 而式(10)的(a),(b),(c)则可合并为

$$-2\omega + \omega^{2}(1+\beta^{2}) < \omega\gamma\beta^{2} < 2(1-\omega) + \frac{1}{2}\omega^{2}(1+\beta^{2}). \tag{11}$$

现讨论两种情况 .(i)如 $\beta \neq 0$,则令 $\beta^2 = Z$,再分两种情况考虑 .(a)如 $\omega > 0$,则式 (11) 可化为 N

(Z) = $\frac{1}{Z}$ $(-2+\omega(1+Z))$ < γ < $\frac{1}{\omega Z}$ $(\frac{1}{2}(1+Z)\omega^2+2(1-\omega))$ = M(Z), 则当 γ 满足 $\max_{Z} N(Z)$ < γ < $\min_{Z} M(Z)$ 时式 (12) 成立; (b) 如 ω < 0 , 则 γ 应满足 $\max_{Z} M(Z)$ < γ < $\min_{Z} N(Z)$,但

$$M'(Z) \equiv \frac{d}{dZ} \left\{ \frac{1}{\omega Z} \left(\frac{1}{2} (1+Z)\omega^2 + 2(1-\omega) \right) \right\}$$

$$= \frac{-1}{2\omega Z^{2}}(\omega - 2)^{2} = \begin{cases} < 0 & (\le \omega > 0, \omega \neq 2), \\ = 0 & (\le \omega = 2), \\ > 0 & (\le \omega < 0); \end{cases}$$

丽

$$N'(Z) \equiv \frac{d}{dZ} \{ \frac{1}{Z} (-2 + \omega(1+Z)) \} = \frac{1}{Z^2} (2 - \omega) = \begin{cases} < 0 & (\le \omega > 2), \\ = 0 & (\le \omega = 2), \\ > 0 & (\le \omega < 2). \end{cases}$$

于是,可以列出 N(Z)与 M(Z)的单调增减性,及当 Z 从 $\beta^2 = \min |\beta|^2$ 变到 $\beta^2 = \max |\beta|^2$ 时, γ 的变化区间 I_{γ} (附表).

I.	N(Z)	M(Z)	I,
(-∞,0)	↑	<u></u>	$(M(\overline{\beta}^2), N(\underline{\beta}^2))^*$
(0,2)	†	\	$(N(\overline{\beta}^2), M(\overline{\beta}^2))$
$(2,+\infty)$	\	\	$(N(\overline{\beta}^2),M(\overline{\beta}^2))$

附表 N(Z)与 M(Z)的单调增减性及 γ 的变化区间 I_{7}

(ii)如果 $\beta = \min |\beta| = 0$,不等式(11)又可分为两种情况:(a)如果 $\beta = 0$,则式(11)给出 $0 < \omega < 2$;(b)如果 $\beta \neq 0$,,则如情况(i)所分析.因对所有 β 均必须满足不等式(11),从而易得 $I_{\omega} = (0,2)$, $I_{\omega} = (N(\overline{\beta}^2), M(\overline{\beta}^2))$.证毕.

3 最优收敛性

定理 2 当 2-块 AOR 方法应用于解最小二乘问题(1)时,且定义参数 $\beta = \rho(J_2) = \max |\beta|$ = $\max_{\mu \in \rho(J_2)} I_m(\mu) = \|A_2A_1^{-1}\|_2$ 及 $\beta = \min |\beta| = \min |I_m(\mu)|$. 如果相应的 Jacobi 迭代矩阵 J_2 有 $\mu \in \rho(J_2)$

纯虚数特征值 $\mu=i\beta$,使得 $\beta=\beta=\beta\neq0$,则对于(γ , ω)=[2($-1+\sqrt{1+\beta^2}$)/ β^2 , $1/\sqrt{1+\beta^2}$]或 [$-2(1+\sqrt{1+\beta^2})/\beta^2$, $-1/\sqrt{1+\beta^2}$],使得 $\rho(L_{\gamma,\omega}^{(2)})=0$ (其中 AOR 迭代矩阵 $L_{\gamma,\omega}^{(2)}$ 由式(7)所定义).

证 由文[4]定理 4.3 可知,在定理 1 的条件下, $L_{r,r}$ 矩阵特征值 v 与 Jacobi 迭代矩阵特征值 μ 之间,满足如下函数关系式 $(v+\gamma-1)^2=\gamma^2\mu^2v$,令 $\mu=i\beta$,得

$$(\upsilon - 1 + \Upsilon)^2 = -\beta^2 \Upsilon^2 \upsilon, \tag{12}$$

展开得 $v^2-(2(1-\gamma)-\beta^2\gamma^2)v+(1-\gamma)^2=0$. 其中, μ 为 Jacobi 阵 J_2 的特征值,v 为 $L_{r,r}$ 的特征值. 由于假定 β^2 有且只有一个固定值,于是令

 $\Delta = b^2 - 4ac = [2(1 - \gamma) - \beta^2 \gamma^2]^2 - 4(1 - \gamma)^2 = \beta^2 \gamma^2 [\beta^2 \gamma^2 - 4(1 - \gamma)] = 0. (13)$ 若 $\beta \neq 0, \gamma \neq 0$,则方程(13)成为 $\beta^2 \gamma^2 + 4\gamma - 4 = 0$,它有 2 个实根

$$\gamma_1 = \frac{2(-1+\sqrt{1+eta^2})}{eta^2} \not \nearrow \gamma_2 = \frac{-2(1+\sqrt{1+eta^2})}{eta^2}.$$

^{*} 当且仅当 $(M(\overline{\beta}^2) < N(\beta^2)$ 时成立.

这时方程(12)有二重根,即 $v=[2(1-\gamma)-\beta^2\gamma^2]/2=1-\gamma-\frac{1}{2}\beta^2\gamma^2$. 由文〔3〕知 AOR 迭代可看作 SOR 迭代的外推,且其特征值之间满足关系式 $\lambda=sv+(1-s)$,若令 $\lambda=s(v-1)+1=0$,易得 s=1/(1-v). 再将 $s=\omega/\gamma$ 代入上式,得 $\omega=\gamma s=\gamma/(1-v)=1/[1+(1/2)\beta^2\gamma]$,从而对应于 γ_1,γ_2 分别有 $\omega_1=1/\sqrt{1+\beta^2}$, $\omega_2=-1/\sqrt{1+\beta^2}$. 因此,当取 (γ_1,ω_1) 或 (γ_2,ω_2) 时, $\rho(L_{\gamma,\omega}^{(2)})=0$,所以,当且仅当 β^2 有一固定值(即 $\mu=\overline{\mu}$)时, $\rho(L_{\gamma,\omega}^{(2)})=0$. 显然,这比 SOR 迭代的最优值(最小谱半径 $\rho(L_{\gamma,\omega}^{(2)})=[\beta/(1+\sqrt{1+\beta^2})^2]^{(1)}$ 好得多。由于连续性,因此至少在 μ 很接近 $\overline{\mu}$ 的情况下,我们可以找到最优 AOR 方法,此时最优 AOR 方法比对应的最优 SOR 方法好.

顺便指出,文[5]也讨论用 2-块 AOR 方法求解最小二乘问题(1)的收敛性,但其所用的 AOR 迭代矩阵特征值与相伴的 Jacobi 迭代阵特征值之间的函数关系式是错误的,因而导致错误的结论.

参 考 文 献

- 1 Markham T L, Neumann M, Plemmons R J. Comvergence of a direct-iterative method for large-scale least squares problems. LAA, 1985, 69:155~167
- 2 Young D M. Iterative solution of large linear systems. New York: Academic Pr., 1971. 145~163
- 3 Hadjidimos A. Accelerated overrelaxation method. Mathematics of comput., 1978, 32(141):149~157
- 4 Varga R S. Matrix iterative analysis. New York: Prentice-Hall, 1962. 48~64
- 5 沈光星·用 2-块 AOR 方法求解最小二乘问题的收敛域、数学研究与评论,1990,10(3):429~432

Optimal Convergence of Two-Block AOR Iteration for Solving Least Square Problems

Zeng Wenping

(Dept. of Man. Info. Sci., Huagiao Univ., 362011, Quanzhou)

Abstract For solving large-scale sparse least square problems, the author discusses the convergence of two-block AOR iterative method; and gives the necessary and sufficient conditions and the domain of its convergence; and further demonstrates that the spectral radius ρ ($L_{\gamma,\omega}^{(2)}$) of two-block AOR optimal iterative matrix.

Keywords least square problem, two-block AOR iteration, convergence