[1]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283-291.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):283-291.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
点击复制

概周期微分方程的概周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第14卷
期数:
1993年第3期
页码:
283-291
栏目:
出版日期:
1993-07-20

文章信息/Info

Title:
Almost Periodic Solutions of Almost Periodic Differential Systems
作者:
王全义
华侨大学管理信息科学系
Author(s):
Wang Quanyi
关键词:
微分方程 存在性 概周期解 平均值法 逐步逼近法
Keywords:
differential equation existence almost periodic solution mean value method successive approximation method
DOI:
10.11830/ISSN.1000-5013.1993.03.0283
摘要:
研究具有两个时间变量的概周期微分方程系的概周期解的存在性问题,在某些条件下,利用平均值法和逐步逼近法证明了这类方程系具有概周期解.在所得的结果中,定理2推广了文[1]中的结果,定理3推广了文[7]中的定理1.
Abstract:
This paper centers on the existence of almost periodic solutions of some almost periodic differential systems with two time variables.Under certain conditions,these systems are proved by mean value method and successive approximation method to have almost

相似文献/References:

[1]梁学信.非一致线性抛物型方程广义解的存在性及唯一性[J].华侨大学学报(自然科学版),1985,6(4):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
 Liang Xuexin.The Existence and Uniqueness of the Generalized Solutions for Non-uniformly Linear parabolic Equations[J].Journal of Huaqiao University(Natural Science),1985,6(3):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
[2]梁学信.拟线性抛物型方程组广义解的存在性[J].华侨大学学报(自然科学版),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
 Liang Xuexin.The Existence of the Generalized Solutions for Quasi-Linear Systems of Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1986,7(3):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
[3]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(3):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
[4]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[5]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(3):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[6]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(3):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[7]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(3):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[8]张上泰.算子方程解的存在性[J].华侨大学学报(自然科学版),1995,16(3):245.[doi:10.11830/ISSN.1000-5013.1995.03.0245]
 Zhang Shangtai.Existence of Solutions to Operator Equations[J].Journal of Huaqiao University(Natural Science),1995,16(3):245.[doi:10.11830/ISSN.1000-5013.1995.03.0245]
[9]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(3):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[10]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(3):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[11]张上泰.一阶微分方程初值问题的单调叠代术[J].华侨大学学报(自然科学版),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
 Zhang Shangtai.Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations[J].Journal of Huaqiao University(Natural Science),1990,11(3):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
[12]王全义.关于概自守微分方程[J].华侨大学学报(自然科学版),1991,12(3):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
 Weng Quanyl.On Almost-Automorphic Differential Equations[J].Journal of Huaqiao University(Natural Science),1991,12(3):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
[13]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[14]佘志炜,王全义.一类二阶微分方程周期解的存在性[J].华侨大学学报(自然科学版),2010,31(2):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
 SHE Zhi-wei,WANG Quan-yi.Existence of Periodic Solutions for a Class of Second Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2010,31(3):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]

备注/Memo

备注/Memo:
校科研基金
更新日期/Last Update: 2014-03-22