[1]曾文平.关于SAOR方法的某些新结果[J].华侨大学学报(自然科学版),1993,14(1):1-7.[doi:10.11830/ISSN.1000-5013.1993.01.0001]
 Zeng Wenping.Some New Results of the Symmetric Accelerated Overrelaxation (SAOR) Method[J].Journal of Huaqiao University(Natural Science),1993,14(1):1-7.[doi:10.11830/ISSN.1000-5013.1993.01.0001]
点击复制

关于SAOR方法的某些新结果()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第14卷
期数:
1993年第1期
页码:
1-7
栏目:
出版日期:
1993-01-20

文章信息/Info

Title:
Some New Results of the Symmetric Accelerated Overrelaxation (SAOR) Method
作者:
曾文平
华侨大学管理信息科学系
Author(s):
Zeng Wenping
关键词:
收敛性 谱半径 SAOR方法 大线性系统
Keywords:
convergence spectral radius symmetric accelerated overrelaxation (SAOR) method large linear systems
DOI:
10.11830/ISSN.1000-5013.1993.01.0001
摘要:
本文研究解大线性系统的对称的AOR(SAOR)方法。讨论了SAOR迭代的收敛性,进一步扩充了文[1]的结果,并在系数矩阵是对称正定矩阵的情况下,给出SAOR迭代谱半径的估计式。
Abstract:
For solving large linear systems, the method of symmetric accelerated overrela- xation (SAOR) is studied. The convergence of SAORiteration is discussed and the restilt of reference [2] is further extended. With a matrix of coefficients acts as symmetric p

相似文献/References:

[1]曾文平.关于AOR方法的收敛性[J].华侨大学学报(自然科学版),1985,6(1):15.[doi:10.11830/ISSN.1000-5013.1985.01.0015]
 Zeng Wenping.On Convergence of AOR Method[J].Journal of Huaqiao University(Natural Science),1985,6(1):15.[doi:10.11830/ISSN.1000-5013.1985.01.0015]
[2]曾文平.GAOR 方法的收敛性[J].华侨大学学报(自然科学版),1990,11(1):1.[doi:10.11830/ISSN.1000-5013.1990.01.0001]
 Zeng Wenping.Convergence of GAOR Method[J].Journal of Huaqiao University(Natural Science),1990,11(1):1.[doi:10.11830/ISSN.1000-5013.1990.01.0001]
[3]蔡火萤.关于Lγ,ω的敛散性定理[J].华侨大学学报(自然科学版),1992,13(3):293.[doi:10.11830/ISSN.1000-5013.1992.03.0293]
 Cai Huoying,Department of,Management Information,et al.Convergence Theorem and Divergence Theorem of the Matrices Lγ,w[J].Journal of Huaqiao University(Natural Science),1992,13(1):293.[doi:10.11830/ISSN.1000-5013.1992.03.0293]
[4]田朝薇,宋海洲.正矩阵最大特征值界的新估计[J].华侨大学学报(自然科学版),2009,30(2):237.[doi:10.11830/ISSN.1000-5013.2009.02.0237]
 TIAN Zhao-wei,SONG Hai-zhou.New Estimation for the Bounds of the Greatest Characteristic Root of a Positive Matrix[J].Journal of Huaqiao University(Natural Science),2009,30(1):237.[doi:10.11830/ISSN.1000-5013.2009.02.0237]
[5]徐强,宋海洲,田朝薇.正矩阵谱半径及其特征向量的新算法[J].华侨大学学报(自然科学版),2010,31(4):473.[doi:10.11830/ISSN.1000-5013.2010.04.0473]
 XU Qiang,SONG Hai-zhou,TIAN Zhao-wei.A New Algorithm for the Spectral Radius and Its Eigenvector of Positive Matrix[J].Journal of Huaqiao University(Natural Science),2010,31(1):473.[doi:10.11830/ISSN.1000-5013.2010.04.0473]
[6]宋海洲,徐强,田朝薇.计算非负不可约矩阵谱半径的新算法[J].华侨大学学报(自然科学版),2011,32(3):348.[doi:10.11830/ISSN.1000-5013.2011.03.0348]
 SONG Hai-zhou,XU Qiang,TIAN Zhao-wei.A New Algorithm for the Spectral Radius of Non-Negative Irreducible Matrix[J].Journal of Huaqiao University(Natural Science),2011,32(1):348.[doi:10.11830/ISSN.1000-5013.2011.03.0348]
[7]田路路,宋海洲,汪秋分.几类极图谱半径序列的极限[J].华侨大学学报(自然科学版),2013,34(1):100.[doi:10.11830/ISSN.1000-5013.2013.01.0100]
 TIAN Lu-lu,SONG Hai-zhou,WANG Qiu-fen.Limitation of the Spectral Radius of Several Kinds of Limited Graphs[J].Journal of Huaqiao University(Natural Science),2013,34(1):100.[doi:10.11830/ISSN.1000-5013.2013.01.0100]

备注/Memo

备注/Memo:
福建省自然科学基金
更新日期/Last Update: 2014-03-22