[1]梁学信.拟线性退缩抛物型方程解的弱最大值原理和渐近性[J].华侨大学学报(自然科学版),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
 Liang Xuexin.Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
点击复制

拟线性退缩抛物型方程解的弱最大值原理和渐近性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第12卷
期数:
1991年第4期
页码:
4
栏目:
出版日期:
1991-10-20

文章信息/Info

Title:
Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation
作者:
梁学信
华侨大学管理信息科学系
Author(s):
Liang Xuexin
关键词:
抛物型方程 广义解 弱最大值原理 渐近性
Keywords:
parabolic equation generalized solution weak maximum principle asymptotic property
DOI:
10.11830/ISSN.1000-5013.1991.04.0004
摘要:
考虑拟线性退缩抛物物型方程的初边值问题(1),(2),证明广义解的弱最大值原理成立。并得到解的衰减估计。
Abstract:
Taking the initial and boundary values of quasilinear degenerate parablic epuations(1),(2) into account,this paper demonstrates the weak maximum principle of the generalized solutions to be true,and obtains the decay estimates of the solutions.

相似文献/References:

[1]梁学信,梁汲廷,吴在德,等.非一致二阶线性抛物型方程广义解的弱最大值原理[J].华侨大学学报(自然科学版),1982,3(2):9.[doi:10.11830/ISSN.1000-5013.1982.02.0009]
[2]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[3]梁学信.一类拟线性抛物型方程组解的先验估计[J].华侨大学学报(自然科学版),1984,5(2):30.[doi:10.11830/ISSN.1000-5013.1984.02.0030]
[4]梁学信.非一致拟线性抛物型方程广义解的极值原理[J].华侨大学学报(自然科学版),1985,6(1):23.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
 Liang Xuexin.Maximum Principle for the Generalized Solutions of Quasi-Linear Nonuniformly Parabolic Epuations[J].Journal of Huaqiao University(Natural Science),1985,6(4):23.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
[5]梁学信.非一致线性抛物型方程广义解的存在性及唯一性[J].华侨大学学报(自然科学版),1985,6(4):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
 Liang Xuexin.The Existence and Uniqueness of the Generalized Solutions for Non-uniformly Linear parabolic Equations[J].Journal of Huaqiao University(Natural Science),1985,6(4):361.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
[6]梁学信.拟线性抛物型方程组广义解的存在性[J].华侨大学学报(自然科学版),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
 Liang Xuexin.The Existence of the Generalized Solutions for Quasi-Linear Systems of Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
[7]梁学信,梁■廷.脱化抛物型方程广义解梯度的Hlder连续性[J].华侨大学学报(自然科学版),1992,13(1):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
 Liang Xuexin,Liang Xiting.The Hlder Continuity of the Gradient Demonstrated by the Generalized Solutions of Degenerate Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1992,13(4):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
[8]梁学信.对角型抛物型方程组广义解的Hlder连续性[J].华侨大学学报(自然科学版),1993,14(3):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
 Liang Xuexin.Holder Continuity of Generalized Solution for the Parabolic Equations of Diagonal Form[J].Journal of Huaqiao University(Natural Science),1993,14(4):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
[9]梁学信.一类退缩抛物型方程解的性质[J].华侨大学学报(自然科学版),1993,14(4):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]
 Liang Xuexin,Dapartment of,Mangement Information,et al.The properties of the solutions to One Class of Degenerate parabolic Equations[J].Journal of Huaqiao University(Natural Science),1993,14(4):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[11]梁汲廷.非一致抛物型方程广义解弱最大值原理的一个证明[J].华侨大学学报(自然科学版),1983,4(1):14.[doi:10.11830/ISSN.1000-5013.1983.01.0014]
[12]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]

备注/Memo

备注/Memo:
福建省科学基金资助课题.
更新日期/Last Update: 2014-03-22