[1]王全义.关于概自守微分方程[J].华侨大学学报(自然科学版),1991,12(3):279-290.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
 Weng Quanyl.On Almost-Automorphic Differential Equations[J].Journal of Huaqiao University(Natural Science),1991,12(3):279-290.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
点击复制

关于概自守微分方程()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第12卷
期数:
1991年第3期
页码:
279-290
栏目:
出版日期:
1991-07-20

文章信息/Info

Title:
On Almost-Automorphic Differential Equations
作者:
王全义
华侨大学管理信息科学系
Author(s):
Weng Quanyl
关键词:
微分方程 不动点方法 存在性 概自守解 平均值法
Keywords:
differential equation fixed point method existence almost-automorphic solution mean value method
DOI:
10.11830/ISSN.1000-5013.1991.03.0279
摘要:
本文主要考虑含有“快”时间 f 和“慢”时间εt 的一类概自守微分方程系的概自守解的存在性问题.在某些条件下,利用不动点方法和平均值法证明了这类方程系具有概自守解.在所得的结果中,定理2比文[1]中的定理3.2更为一般化.
Abstract:
This paper centers on the existence of an almost-automorphic solution of some almost-automorphic differential systems with“fast”time t and“slow” time εt.Under certain condition,these systems are proved by fixed point method and mean value method to have a

相似文献/References:

[1]张上泰.一阶微分方程初值问题的单调叠代术[J].华侨大学学报(自然科学版),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
 Zhang Shangtai.Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations[J].Journal of Huaqiao University(Natural Science),1990,11(3):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
[2]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[3]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[4]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(3):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[5]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(3):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[6]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(3):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[7]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(3):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[8]王全义.非线性系统概周期解的存在性和唯一性及不稳定性[J].华侨大学学报(自然科学版),1997,18(4):341.[doi:10.11830/ISSN.1000-5013.1997.04.0341]
[9]佘志炜,王全义.一类二阶微分方程周期解的存在性[J].华侨大学学报(自然科学版),2010,31(2):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
 SHE Zhi-wei,WANG Quan-yi.Existence of Periodic Solutions for a Class of Second Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2010,31(3):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
[10]陈应生.一类二阶具偏差变元微分方程周期解[J].华侨大学学报(自然科学版),2012,33(4):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]
 CHEN Ying-sheng.Periodic Solutions for a Class of Second Order Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(3):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]

更新日期/Last Update: 2014-03-22