[1]曾文平.解色散方程的一类新的无条件稳定的半显格式[J].华侨大学学报(自然科学版),1991,12(3):274-278.[doi:10.11830/ISSN.1000-5013.1991.03.0274]
 Zeng Wenping.A New Class of Unconditionally Stable and Semi-Explicit Schemes for Solving the Dispersive Equation[J].Journal of Huaqiao University(Natural Science),1991,12(3):274-278.[doi:10.11830/ISSN.1000-5013.1991.03.0274]
点击复制

解色散方程的一类新的无条件稳定的半显格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第12卷
期数:
1991年第3期
页码:
274-278
栏目:
出版日期:
1991-07-20

文章信息/Info

Title:
A New Class of Unconditionally Stable and Semi-Explicit Schemes for Solving the Dispersive Equation
作者:
曾文平
华侨大学管理信息科学系
Author(s):
Zeng Wenping
关键词:
半显式差分格式 无条件稳定 色散方程
Keywords:
semi-explicit difference scheme unconditional stability dispersive equation
DOI:
10.11830/ISSN.1000-5013.1991.03.0274
摘要:
本文建立了解色散方程的一类新的三层的半显式差分格式 A4.格式 A4在很多方面类以于格式 A3.它们都是无条件稳定的,且都可以显式地进行计算.这两类格式也都可以看作 Du-Fort Frankel 差分格式对色散方程的推广.
Abstract:
A new class of three-level semi-explicit difference schemes A4 are develpoed in this paper for solving the dispersive equation.Scheme A4 is similar to scheme A3 in many ways.They are both unconditionally stable and expli- citly calculated.And both of them

相似文献/References:

[1]王子丁.色散方程的六点半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):148.[doi:10.11830/ISSN.1000-5013.1993.02.0148]
 Wang Ziding.Semi-Explicit Difference Schemes of Six Point Unconditionally Stable Relating to Dispersive Equation[J].Journal of Huaqiao University(Natural Science),1993,14(3):148.[doi:10.11830/ISSN.1000-5013.1993.02.0148]
[2]曹文平.高阶schrodinger方程的恒稳显式与半显式差分格式[J].华侨大学学报(自然科学版),1996,17(1):1.[doi:10.11830/ISSN.1000-5013.1996.01.0001]
 Zeng Wenping.Steady Explicit and Semi-Explicit Difference Scheme of High-Order Schr dinger Equation[J].Journal of Huaqiao University(Natural Science),1996,17(3):1.[doi:10.11830/ISSN.1000-5013.1996.01.0001]
[3]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[4]曾文平.二维对流扩散方程恒稳的蛙跳积分格式[J].华侨大学学报(自然科学版),2002,23(3):232.[doi:10.3969/j.issn.1000-5013.2002.03.004]
 Zeng Wenping.A Steady Leapfrog Integration Scheme for Solving Two-Dimensional Convection-Diffusion Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):232.[doi:10.3969/j.issn.1000-5013.2002.03.004]
[5]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]

更新日期/Last Update: 2014-03-22