[1]曾文平.GAOR 方法的收敛性[J].华侨大学学报(自然科学版),1990,11(1):1-7.[doi:10.11830/ISSN.1000-5013.1990.01.0001]
 Zeng Wenping.Convergence of GAOR Method[J].Journal of Huaqiao University(Natural Science),1990,11(1):1-7.[doi:10.11830/ISSN.1000-5013.1990.01.0001]
点击复制

GAOR 方法的收敛性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第11卷
期数:
1990年第1期
页码:
1-7
栏目:
出版日期:
1990-01-20

文章信息/Info

Title:
Convergence of GAOR Method
作者:
曾文平
华侨大学应用数学系
Author(s):
Zeng Wenping
关键词:
收敛 迭代法 谱半径 GAOR 方法
Keywords:
convergence iteration method spectral radius generalized accelerated overrelaxation method
DOI:
10.11830/ISSN.1000-5013.1990.01.0001
摘要:
本文导出 GAOR 迭代矩阵谱半径的表达式,给出了在 L 矩阵情况下 GAOR 与 GSOR 迭代矩阵谱半径之间的关系,并在系数矩阵为 L 矩阵,H 矩阵,Hermitian 正定矩阵,严格对角占优矩阵及不可约对角占优矩阵的条件下,讨论了 GAOR 迭代的收敛性,进一步扩充了文[2]、[3]的结果.
Abstract:
GAOR method,generalized accelerated overrelaxation method,is an iterative method proposed by A.Hadjidimos for solving the linear equations Ax=b.Its convergence was discussed by him under the conditions that the coefficient mat- rices being L natrix,M matr

相似文献/References:

[1]曾文平.关于解大线性系统的推广的双参数松弛法的收敛性[J].华侨大学学报(自然科学版),1986,7(4):371.[doi:10.11830/ISSN.1000-5013.1986.04.0371]
 Zeng Wenping.On the Convergence of Some Extrapolated Two-Paramater Overrelaxation Methods for Numerical Solution of Large Linear Systems[J].Journal of Huaqiao University(Natural Science),1986,7(1):371.[doi:10.11830/ISSN.1000-5013.1986.04.0371]
[2]陈恒新.弱对角占优矩阵的Jacobi和Gauss-Seidel及SOR迭代法收敛准则[J].华侨大学学报(自然科学版),1989,10(3):229.[doi:10.11830/ISSN.1000-5013.1989.03.0229]
 Chen Hengxin.Convergence Criteria of Jacobi, Gauss-Seidel,and SOR Iteration Methods in Weak Diagonally Dominant Matrix[J].Journal of Huaqiao University(Natural Science),1989,10(1):229.[doi:10.11830/ISSN.1000-5013.1989.03.0229]
[3]张力,黄世民.二氧化硫转化器优化设计中一些问题的探讨[J].华侨大学学报(自然科学版),1990,11(4):403.[doi:10.11830/ISSN.1000-5013.1990.04.0403]
 Zhang Li,Huang Shimin,Departnent of,et al.Some Problems on the Optimum Design of a SO2 Converter[J].Journal of Huaqiao University(Natural Science),1990,11(1):403.[doi:10.11830/ISSN.1000-5013.1990.04.0403]
[4]蔡火萤.关于Lγ,ω的敛散性定理[J].华侨大学学报(自然科学版),1992,13(3):293.[doi:10.11830/ISSN.1000-5013.1992.03.0293]
 Cai Huoying,Department of,Management Information,et al.Convergence Theorem and Divergence Theorem of the Matrices Lγ,w[J].Journal of Huaqiao University(Natural Science),1992,13(1):293.[doi:10.11830/ISSN.1000-5013.1992.03.0293]
[5]王子丁.一类矩阵的迭代法的误差检验[J].华侨大学学报(自然科学版),1994,15(2):153.[doi:10.11830/ISSN.1000-5013.1994.02.0153]
 Wang Ziding.Error Checking of iteration Method for a Class of Matrices[J].Journal of Huaqiao University(Natural Science),1994,15(1):153.[doi:10.11830/ISSN.1000-5013.1994.02.0153]
[6]陈恒新.非奇异H矩阵的判别定理[J].华侨大学学报(自然科学版),2006,27(1):24.[doi:10.3969/j.issn.1000-5013.2006.01.006]
 Chen Hengxin.The Criteria of Nonsingular H-Matrices[J].Journal of Huaqiao University(Natural Science),2006,27(1):24.[doi:10.3969/j.issn.1000-5013.2006.01.006]

更新日期/Last Update: 2014-03-22